43,124 research outputs found

    Minimum Information About a Simulation Experiment (MIASE)

    Get PDF
    Reproducibility of experiments is a basic requirement for science. Minimum Information (MI) guidelines have proved a helpful means of enabling reuse of existing work in modern biology. The Minimum Information Required in the Annotation of Models (MIRIAM) guidelines promote the exchange and reuse of biochemical computational models. However, information about a model alone is not sufficient to enable its efficient reuse in a computational setting. Advanced numerical algorithms and complex modeling workflows used in modern computational biology make reproduction of simulations difficult. It is therefore essential to define the core information necessary to perform simulations of those models. The Minimum Information About a Simulation Experiment (MIASE, Glossary in Box 1) describes the minimal set of information that must be provided to make the description of a simulation experiment available to others. It includes the list of models to use and their modifications, all the simulation procedures to apply and in which order, the processing of the raw numerical results, and the description of the final output. MIASE allows for the reproduction of any simulation experiment. The provision of this information, along with a set of required models, guarantees that the simulation experiment represents the intention of the original authors. Following MIASE guidelines will thus improve the quality of scientific reporting, and will also allow collaborative, more distributed efforts in computational modeling and simulation of biological processes

    Bringing the OpenMI to LIFE Progress Report No. 4 - 31st March 2008 – 30th September 2008

    Get PDF
    The Water Framework Directive demands an integrated approach to water management. This requires the ability to predict how catchment processes will behave and interact in response to the activities of water managers and others. In most contexts, it is not feasible to build a single predictive model that adequately represents all the processes; therefore a means of linking models of individual processes is required. This is met by the FP5 HarmonIT project’s Open Modelling Interface and Environment (the OpenMI). The purpose of this project is to transform the OpenMI from a research output to a sustainable operational Standard. It will build the capacity to use the OpenMI and will demonstrate it under operational conditions. It will also develop, test and demonstrate the future support organisation for the OpenMI. Finally, information about the OpenMI will be disseminated to users

    Real-Time Distributed Aircraft Simulation through HLA

    Get PDF
    This paper presents some ongoing researches carried out in the context of the PRISE (Research Platform for Embedded Systems Engineering) Project. This platform has been designed to evaluate and validate new embedded system concepts and techniques through a special hardware and software environment. Since many actual embedded equipments are not available, their corresponding behavior is simulated using the HLA architecture, an IEEE standard for distributed simulation, and a Run-time infrastructure called CERTI and developed at ONERA. HLA is currently largely used in many simulation applications, but the limited performances of the RTIs raises doubts over the feasibility of HLA federations with real-time requirements. This paper addresses the problem of achieving real-time performances with HLA. Several experiments are discussed using well-known aircraft simulators such as the Microsoft Flight Simulator, FlightGear, and X-plane connected with the CERTI Run-time Infrastructure. The added value of these activities is to demonstrate that according to a set of innovative solutions, HLA is well suited to achieve hard real time constraints

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    HLA high performance and real-time simulation studies with CERTI

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. Indeed, current HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to provide real-time capabilities to Run Time Infrastructures (RTI). This paper describes our approach focusing on achieving hard real-time properties for HLA federations through a complete state of the art on the related domain. Our paper also proposes a global bottom up approach from basic hardware and software basic requirements to experimental tests for validation of distributed real-time simulation with CERTI
    corecore