243 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Energy-Aware High Performance Computing

    Get PDF
    High performance computing centres consume substantial amounts of energy to power large-scale supercomputers and the necessary building and cooling infrastructure. Recently, considerable performance gains resulted predominantly from developments in multi-core, many-core and accelerator technology. Computing centres rapidly adopted this hardware to serve the increasing demand for computational power. However, further performance increases in large-scale computing systems are limited by the aggregate energy budget required to operate them. Power consumption has become a major cost factor for computing centres. Furthermore, energy consumption results in carbon dioxide emissions, a hazard for the environment and public health; and heat, which reduces the reliability and lifetime of hardware components. Energy efficiency is therefore crucial in high performance computing
    • …
    corecore