1,007 research outputs found

    Modeling the impact of node speed on the ranging estimation with UWB body area networks

    Get PDF
    International audience—The purpose of this paper is to evaluate the impact of the node speed on the ranging estimation for location applications with Wireless Body Area Networks (WBAN). While estimated with the 3-Way ranging protocol (3-WR) , this distance between two nodes placed on the body can be affected by the human movements. Thus, we study theoretically the ranging error with the 3-WR, based on a perfect channel, a MAC layer based on TDMA using two scheduling strategies (Single node localization (P2P-B) and Aggregated & Broadcast (A&B)) and a PHY layer based on Ultra Wideband (IR-UWB). We demonstrate the accuracy of the model, and show that the distance error is highly correlated with the speed of nodes, while the associated mobility model has an impact on the design of MAC strategies by simulation

    Impact of on-body channel models on positioning success rate with UWB Wireless Body Area Networks

    Get PDF
    International audienceIn this paper, we aim to evaluate the positioning success rate of nodes placed on the body using different scheduling strategies at the Media Access Control (MAC) layer with Ultra Wide Band (UWB) Wireless Body Area Networks (WBAN) and under three different channel models. For this purpose, each node calculates its relative position with the estimation of its distances with the on-body anchors. Accordingly, the distance between two nodes can be estimated with the transmission of three packets, as defined by the '3-Way ranging' protocol (3-WR). However, these transactions can be affected by the WBAN channel leading into a packet loss and therefore positioning errors. In this work, we consider a PHY layer based on Impulse-Radio UWB (IR-UWB) with three different channels: (a) a theoretical path loss channel model based on the on-body CM3 channel (Anechoic chamber), (b) a simulated channel calculated with the PyLayers ray-tracing simulator and (c) experimental traces obtained by measurement. Moreover, we analyze the positioning success rate using three scheduling strategies (Single node localization (P2P), Broadcast Single node localiza-tion (P2P-B) and Aggregated & Broadcast (A&B)) with a MAC layer based on time division multiple access (TDMA) and under a realistic pedestrian walking scenario. Our results show that the scheduling strategy with A&B let the nodes to estimate more positions even through channels with slow and fast fading

    PHALANX: Expendable Projectile Sensor Networks for Planetary Exploration

    Get PDF
    Technologies enabling long-term, wide-ranging measurement in hard-to-reach areas are a critical need for planetary science inquiry. Phenomena of interest include flows or variations in volatiles, gas composition or concentration, particulate density, or even simply temperature. Improved measurement of these processes enables understanding of exotic geologies and distributions or correlating indicators of trapped water or biological activity. However, such data is often needed in unsafe areas such as caves, lava tubes, or steep ravines not easily reached by current spacecraft and planetary robots. To address this capability gap, we have developed miniaturized, expendable sensors which can be ballistically lobbed from a robotic rover or static lander - or even dropped during a flyover. These projectiles can perform sensing during flight and after anchoring to terrain features. By augmenting exploration systems with these sensors, we can extend situational awareness, perform long-duration monitoring, and reduce utilization of primary mobility resources, all of which are crucial in surface missions. We call the integrated payload that includes a cold gas launcher, smart projectiles, planning software, network discovery, and science sensing: PHALANX. In this paper, we introduce the mission architecture for PHALANX and describe an exploration concept that pairs projectile sensors with a rover mothership. Science use cases explored include reconnaissance using ballistic cameras, volatiles detection, and building timelapse maps of temperature and illumination conditions. Strategies to autonomously coordinate constellations of deployed sensors to self-discover and localize with peer ranging (i.e. a local GPS) are summarized, thus providing communications infrastructure beyond-line-of-sight (BLOS) of the rover. Capabilities were demonstrated through both simulation and physical testing with a terrestrial prototype. The approach to developing a terrestrial prototype is discussed, including design of the launching mechanism, projectile optimization, micro-electronics fabrication, and sensor selection. Results from early testing and characterization of commercial-off-the-shelf (COTS) components are reported. Nodes were subjected to successful burn-in tests over 48 hours at full logging duty cycle. Integrated field tests were conducted in the Roverscape, a half-acre planetary analog environment at NASA Ames, where we tested up to 10 sensor nodes simultaneously coordinating with an exploration rover. Ranging accuracy has been demonstrated to be within +/-10cm over 20m using commodity radios when compared to high-resolution laser scanner ground truthing. Evolution of the design, including progressive miniaturization of the electronics and iterated modifications of the enclosure housing for streamlining and optimized radio performance are described. Finally, lessons learned to date, gaps toward eventual flight mission implementation, and continuing future development plans are discussed

    D-SLATS: Distributed Simultaneous Localization and Time Synchronization

    Full text link
    Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error

    Bounds on RF cooperative localization for video capsule endoscopy

    Get PDF
    Wireless video capsule endoscopy has been in use for over a decade and it uses radio frequency (RF) signals to transmit approximately fifty five thousands clear pictures of inside the GI tract to the body-mounted sensor array. However, physician has no clue on the exact location of the capsule inside the GI tract to associate it with the pictures showing abnormalities such as bleeding or tumors. It is desirable to use the same RF signal for localization of the VCE as it passes through the human GI tract. In this thesis, we address the accuracy limits of RF localization techniques for VCE localization applications. We present an assessment of the accuracy of cooperative localization of VCE using radio frequency (RF) signals with particular emphasis on localization inside the small intestine. We derive the Cramer-Rao Lower Bound (CRLB) for cooperative location estimators using the received signal strength(RSS) or the time of arrival (TOA) of the RF signal. Our derivations are based on a three-dimension human body model, an existing model for RSS propagation from implant organs to body surface and a TOA ranging error model for the effects of non-homogenity of the human body on TOA of the RF signals. Using models for RSS and TOA errors, we first calculate the 3D CRLB bounds for cooperative localization of the VCE in three major digestive organs in the path of GI tract: the stomach, the small intestine and the large intestine. Then we analyze the performance of localization techniques on a typical path inside the small intestine. Our analysis includes the effects of number of external sensors, the external sensor array topology, number of VCE in cooperation and the random variations in transmit power from the capsule

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Modeling of Time-of-arrival for CM4 Body Area Networks Channel

    Get PDF
    In Time-of-Arrival (TOA) based indoor human tracking system, the human body mounted with the target sensor can cause non-line-of-sight (NLOS) scenario and result in significant ranging error. In this thesis, we measured the TOA ranging error in a typical indoor environment and analyzed sources of inaccuracy in TOAbased indoor localization system. To quantitatively describe the TOA ranging error caused by human body, we introduce a statistical TOA ranging error model for body mounted sensors based on the measurement results. This model separates the ranging error into multipath error and NLOS error caused by the on-body creeping wave phenomenon. Both multipath error and NLOS error are modeled as a Gaussian variable. The distribution of multipath error is only relative to the bandwidth of the system while the distribution of NLOS error is relative to the angle between human facing direction and the direction of Transmitter-Receiver, signal to noise ratio (SNR) and bandwidth of the system, which clearly shows the effects of human body on TOA ranging. An efficient way to fight against the TOA ranging error caused by human body is to employ site-specific channel models by using ray-tracing technology. However, existing ray-tracing softwares lack the propagation model that takes the effects of human body into account. To address that issue, this thesis presents a empirical model for near human body ultra-wideband (UWB) propagation channel that is valid for the frequency range from 3GHz to 8GHz. It is based on measurements conducted in a anechoic chamber which can be regarded as free space. The empirical model shows the joint propagation characteristics of the on body channel and the channel between body surface and external access point. It includes the loss of the first path, arrival time of the first path and the total pathloss. Models for all three aspects have been partitioned into two sections by a break point due to the geometrical property of human body and the creeping wave phenomenon. The investigation on first path behavior can be regarded as a theoretical basis of raytracing technique that takes the effects of human body into consideration

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Technology Implications of UWB on Wireless Sensor Network-A detailed Survey

    Get PDF
    In today’s high tech “SMART” world sensor based networks are widely used. The main challenge with wireless-based sensor networks is the underneath physical layer. In this survey, we have identified core obstacles of wireless sensor network when UWB is used at PHY layer. This research was done using a systematic approach to assess UWB’s effectiveness (for WSN) based on information taken from various research papers, books, technical surveys and articles. Our aim is to measure the UWB’s effectiveness for WSN and analyze the different obstacles allied with its implementation. Starting from existing solutions to proposed theories. Here we have focused only on the core concerns, e.g. spectrum, interference, synchronization etc.Our research concludes that despite all the bottlenecks and challenges, UWB’s efficient capabilities makes it an attractive PHY layer scheme for the WSN, provided we can control interference and energy problems. This survey gives a fresh start to the researchers and prototype designers to understand the technological concerns associated with UWB’s implementatio
    • …
    corecore