3,850 research outputs found

    Measurement of Micro-bathymetry with a GOPRO Underwater Stereo Camera Pair

    Get PDF
    A GO-PRO underwater stereo camera kit has been used to measure the 3D topography (bathymetry) of a patch of seafloor producing a point cloud with a spatial data density of 15 measurements per 3 mm grid square and an standard deviation of less than 1 cm A GO-PRO camera is a fixed focus, 11 megapixel, still-frame (or 1080p high-definition video) camera, whose small form-factor and water-proof housing has made it popular with sports enthusiasts. A stereo camera kit is available providing a waterproof housing (to 61 m / 200 ft) for a pair of cameras. Measures of seafloor micro-bathymetrycapable of resolving seafloor features less than 1 cm in amplitude were possible from the stereoreconstruction. Bathymetric measurements of this scale provide important ground-truth data and boundary condition information for modeling of larger scale processes whose details depend on small-scale variations. Examples include modeling of turbulent water layers, seafloor sediment transfer and acoustic backscatter from bathymetric echo sounders

    Mine Safety Detection System (MSDS)

    Get PDF
    Systems Engineering Project ReportThe search, detection, identification and assessment components of the U.S. Navys organic modular in-stride Mine Countermeasure (MCM) Concept of Operations (CONOPS) have been evaluated for their effectiveness as part of a hypothetical exercise in response to the existence of sea mines placed in the sea lanes of the Strait of Hormuz. The current MCM CONOPS has been shown to be capable of supporting the mine search and detection effort component allocation needs by utilizing two Airborne Mine Countermeasure (AMCM) deployed systems. This adequacy assessment is tenuous. The CONOPS relies heavily upon the Sikorsky MH- 60/S as the sole platform from which the systems operate. This reliance is further compounded by the fact both AMCM systems are not simultaneously compatible on board the MH-60/S. As such, resource availability will challenge the MCM CONOPS as well as the other missions for which the MH-60/S is intended. Additionally, the AMCM CONOPS systems are dependent upon the presence of warfighters in the helicopters above the minefield and as integral participants in the efforts to identify sea mines and to assess their threat level. Model Based System Engineering (MBSE) techniques have been combined with research and stakeholder inputs in an analysis that supports these assertions.mhttp://archive.org/details/minesafetydetect1094517457Approved for public release; distribution is unlimited

    Environmental modeling with precision navigation using ROAZ autonomous surface vehicle

    Get PDF
    The use of robotic vehicles for environmental modeling is discussed. This paper presents diverse results in autonomous marine missions with the ROAZ autonomous surface vehicle. The vehicle can perform autonomous missions while gathering marine data with high inertial and positioning precision. The underwater world is an, economical and environmental, asset that need new tools to study and preserve it. ROAZ is used in marine environment missions since it can sense and monitor the surface and underwater scenarios. Is equipped with a diverse set of sensors, cameras and underwater sonars that generate 3D environmental models. It is used for study the marine life and possible underwater wrecks that can pollute or be a danger to marine navigation. The 3D model and integration of multibeam and sidescan sonars represent a challenge in nowadays. Adding that it is important that robots can explore an area and make decisions based on their surroundings and goals. Regard that, autonomous robotic systems can relieve human beings of repetitive and dangerous tasks

    Next generation mine countermeasures for the very shallow water zone in support of amphibious operations

    Get PDF
    This report describes system engineering efforts exploring next generation mine countermeasure (MCM) systems to satisfy high priority capability gaps in the Very Shallow Water (VSW) zone in support of amphibious operations. A thorough exploration of the problem space was conducted, including stakeholder analysis, MCM threat analysis, and current and future MCM capability research. Solution-neutral requirements and functions were developed for a bounded next generation system. Several alternative architecture solutions were developed that included a critical evaluation that compared performance and cost. The resulting MCM system effectively removes the man from the minefield through employment of autonomous capability, reduces operator burden with sensor data fusion and processing, and provides a real-time communication for command and control (C2) support to reduce or eliminate post mission analysis.http://archive.org/details/nextgenerationmi109456968N

    Evaluation of a Canonical Image Representation for Sidescan Sonar

    Full text link
    Acoustic sensors play an important role in autonomous underwater vehicles (AUVs). Sidescan sonar (SSS) detects a wide range and provides photo-realistic images in high resolution. However, SSS projects the 3D seafloor to 2D images, which are distorted by the AUV's altitude, target's range and sensor's resolution. As a result, the same physical area can show significant visual differences in SSS images from different survey lines, causing difficulties in tasks such as pixel correspondence and template matching. In this paper, a canonical transformation method consisting of intensity correction and slant range correction is proposed to decrease the above distortion. The intensity correction includes beam pattern correction and incident angle correction using three different Lambertian laws (cos, cos2, cot), whereas the slant range correction removes the nadir zone and projects the position of SSS elements into equally horizontally spaced, view-point independent bins. The proposed method is evaluated on real data collected by a HUGIN AUV, with manually-annotated pixel correspondence as ground truth reference. Experimental results on patch pairs compare similarity measures and keypoint descriptor matching. The results show that the canonical transformation can improve the patch similarity, as well as SIFT descriptor matching accuracy in different images where the same physical area was ensonified.Comment: 7 pages, 8 figure
    • …
    corecore