126 research outputs found

    An outdoor spatially-aware audio playback platform exemplified by a virtual zoo

    Get PDF
    Outlined in this short paper is a framework for the construction of outdoor location-and direction-aware audio applications along with an example application to showcase the strengths of the framework and to demonstrate how it works. Although there has been previous work in this area which has concentrated on the spatial presentation of sound through wireless headphones, typically such sounds are presented as though originating from specific, defined spatial locations within a 3D environment. Allowing a user to move freely within this space and adjusting the sound dynamically as we do here, further enhances the perceived reality of the virtual environment. Techniques to realise this are implemented by the real-time adjustment of the presented 2 channels of audio to the headphones, using readings of the user's head orientation and location which in turn are made possible by sensors mounted upon the headphones. Aside from proof of concept indoor applications, more user-responsive applications of spatial audio delivery have not been prototyped or explored. In this paper we present an audio-spatial presentation platform along with a primary demonstration application for an outdoor environment which we call a {\em virtual audio zoo}. This application explores our techniques to further improve the realism of the audio-spatial environments we can create, and to assess what types of future application are possible

    Head-Related Transfer Functions and Virtual Auditory Display

    Get PDF

    Measurement of head-related transfer functions : A review

    Get PDF
    A head-related transfer function (HRTF) describes an acoustic transfer function between a point sound source in the free-field and a defined position in the listener's ear canal, and plays an essential role in creating immersive virtual acoustic environments (VAEs) reproduced over headphones or loudspeakers. HRTFs are highly individual, and depend on directions and distances (near-field HRTFs). However, the measurement of high-density HRTF datasets is usually time-consuming, especially for human subjects. Over the years, various novel measurement setups and methods have been proposed for the fast acquisition of individual HRTFs while maintaining high measurement accuracy. This review paper provides an overview of various HRTF measurement systems and some insights into trends in individual HRTF measurements
    • …
    corecore