105 research outputs found

    Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    Get PDF
    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be stabilized by increasing network inhibition or introducing short term depression in the excitatory synapses, but the signal to noise ratio remains low. Our results demonstrate that the interaction of synchrony with dendritic spiking mechanisms can have profound consequences for the dynamics on the single neuron and network level

    Frequency preference and reliability of signal integration

    Get PDF
    Die Eigenschaften einzelner Nervenzellen sind von grundlegender Bedeutung für die Verarbeitung von Informationen im Nervensystem. Neuronen antworten auf Eingangsreize durch Veränderung der elektrischen Spannung über die Zellmembran. Die Spannungsantwort wird dabei durch die Dynamik der Ionenkanäle in der Zellmembran bestimmt. In dieser Arbeit untersuche ich anhand von leitfähigkeits-basierten Modellneuronen den Einfluss von Ionenkanälen auf zwei Aspekte der Signalverarbeitung: die Frequenz-Selektivität sowie die Zuverlässigkeit und zeitliche Präzision von Aktionspotentialen. Zunächst werden die zell-intrinsischen Mechanismen identifiziert, welche the Frequenz-Selektivität und die Zuverlässigkeit bestimmen. Weiterhin wird untersucht, wie Ionenkanäle diese Mechanismen modulieren können, um die Integration von Signalen zu optimieren. Im ersten Teil der Arbeit wird demonstriert, dass der Mechanismus der unterschwelligen Resonanz, so wie er bisher für periodische Signale beobachtet wurde, auch auf nicht-periodische Signale anwendbar ist und sich ebenfalls in den Feuerraten niederschlägt. Im zweiten Teil wird gezeigt, dass zeitliche Präzision und Zuverlässigkeit von Aktionspotentialen mit der Stimulusfrequenz variieren und dass, in Abhängigkeit davon, ob das Stimulusmittel über- oder unterhalb der Feuerschwelle liegt, zwei Stimulusregime unterschieden werden müssen. In beiden Regimen existiert eine bevorzugte Stimulusfrequenz, welche durch die Gesamtleitfähigkeit und die Dynamik spezifischer Ionenkanäle moduliert werden kann. Im dritten Teil wird belegt, dass Ionenkanäle die Zuverlässigkeit auch direkt über eine Veränderung der Sensitivität einer Zelle gegenüber neuronalem Rauschen bestimmen können. Die Ergebnisse der Arbeit lassen auf eine wichtige Rolle der dynamischen Regulierung der Ionenkanäle für die Frequenz-Selektivität und die zeitliche Präzision und Zuverlässigkeit der Spannungsantworten schließen.The properties of individual neurons are of fundamental importance for the processing of information in the nervous system. The generation of voltage responses to input signals, in particular, depends on the properties of ion channels in the cell membrane. Within this thesis, I employ conductance-based model neurons to investigate the effect of ionic conductances and their dynamics on two aspects of signal processing: frequency-selectivity and temporal precision and reliability of spikes. First, the cell-intrinsic mechanisms that determine frequency selectivity and spike timing reliability are identified on the basis of conductance-based model neurons. Second, it is analyzed how ionic conductances can serve to modulate these mechanisms in order to optimize signal integration. In the first part, the frequency selectivity of subthreshold response amplitudes previously observed for periodic stimuli is proven to extend to nonperiodic stimuli and to translate into firing rates. In the second part, it is demonstrated that spike timing reliability is frequency-selective and that two different stimulus regimes have to be distinguished, depending on whether the stimulus mean is below or above threshold. In both cases, resonance effects determine the most reliable stimulus frequency. It is shown that this frequency preference can be modulated by the peak conductance and dynamics of specific ion channels. In the third part, evidence is provided that ionic conductances determine spike timing reliability beyond changes in the preferred frequency. It is demonstrated that ionic conductances also exert a direct influence on the sensitivity of the timing of spikes to neuronal noise. The findings suggest an important role for dynamic neuromodulation of ion channels with regard to frequency selectivity and spike timing reliability

    The spontaneous activity of organotypic and dissociated networks

    Get PDF
    In the absence of external stimuli, the nervous system exhibits a spontaneous electrical activity whose functions are not fully understood, and that represents the background noise of brain operations. In vitro models have long represented a simple and useful tool for studying the basic properties of neurons and networks. This study provides a detailed characterization of spontaneous activity of neuronal networks in different in vitro models. In particular, it clarifies the role of the extra-cellular environment and of the intrinsic architecture in shaping the spontaneous activity of networks by means of calcium imaging techniques. The results presented within this study come from three experimental works, each one addressing a particular feature of the network model: \u2022 Chemical composition of the extra-cellular environment: a comparison of dissociated hippocampal cultures grown in three different culturing media revealed that the use of an astrocyte-conditioned medium improves significantly the frequency and synchronization of neuronal signaling. \u2022 Mechanical and topographical properties of the extra-cellular environment: the design of a hybrid micro-nano substrate for dissociated hippocampal cultures revealed that nano-scaled patterns provide an improved artificial extra-cellular matrix for obtaining neuronal networks with a frequent spontaneous signaling. \u2022 Network architecture: synchronized events called Global Up states - involving the totality of neurons in the network - are observed in both organotypic and dissociated neurons; the duration of Global Up states increases by increasing the complexity of the network, while their frequency decreases. Simulations with simplified models of single- and multilayered networks confirm the experimental data. Taken together, these results show that the spontaneous synchronous activity of neurons is a result of their intrinsic biophysical properties, arising also after disruption of the original network architecture. However, dissociated neurons show different levels of synchrony depending on the chemical and topographical composition of the surrounding artificial extra-cellular matrix. Moreover, the specific architecture of the network and its single- or multilayered composition has an influence on the frequency and duration of spontaneous events, suggesting a potential explanation for the diversity of oscillatory rhythms observed in the brain

    Oscillations in routing and chaos

    Get PDF

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202
    • …
    corecore