285 research outputs found

    Modeling User Performance on Curved Constrained Paths

    Get PDF
    International audienceIn 1997, Accot and Zhai presented seminal work analyzing the temporal cost and instantaneous speed profiles associated with movement along constrained paths. Their work posited and validated the steering law, which described the relationship between path constraint, path length and the temporal cost of path traversal using a computer input device (e.g. a mouse). In this paper, we argue that the steering law fails to correctly model constrained paths of varying, arbitrary curvature, propose a new form of the law that accommodates these curved paths, and empirically validate our model

    Identifying new concepts for innovative lighting-based interventions to influence movement and behaviours in train stations

    Get PDF
    The disorderly and disrupted movement of passengers within train stations are key concerns in rail transport, especially where there are increasing numbers of passengers, coupled with often out-dated, adapted station spaces. With careful planning and design, different characteristics of lighting can be employed to address problems relating to the movement and behaviour of passengers in railway environments. This study aims to offer an approach to identifying new concepts for lighting-based interventions, to influence passenger movement behaviours within train stations. Behaviourally-orientated lighting literature was reviewed, providing the knowledge base to inform a series of engagement activities with transport stakeholders and lighting technologists, to understand problematic behaviours and how these might be resolved through targeted lighting design. In combining findings from the literature with insights from rail and transport related industry stakeholders and lighting specialists, a number of potential opportunities for novel applications of lighting have been identified. Six scenarios are developed that illustrate these opportunities for potential lighting-based interventions to influence train passenger movement and behaviour. These scenarios can be used to inform the direction of further research and consideration of how different lighting characteristics can affect rail passenger behaviours

    Identification of infrastructure related risk factors, Deliverable 5.1 of the H2020 project SafetyCube

    Get PDF
    The present Deliverable (D5.1) describes the identification and evaluation of infrastructure related risk factors. It outlines the results of Task 5.1 of WP5 of SafetyCube, which aimed to identify and evaluate infrastructure related risk factors and related road safety problems by (i) presenting a taxonomy of infrastructure related risks, (ii) identifying “hot topics” of concern for relevant stakeholders and (iii) evaluating the relative importance for road safety outcomes (crash risk, crash frequency and severity etc.) within the scientific literature for each identified risk factor. To help achieve this, Task 5.1 has initially exploited current knowledge (e.g. existing studies) and, where possible, existing accident data (macroscopic and in-depth) in order to identify and rank risk factors related to the road infrastructure. This information will help further on in WP5 to identify countermeasures for addressing these risk factors and finally to undertake an assessment of the effects of these countermeasures. In order to develop a comprehensive taxonomy of road infrastructure-related risks, an overview of infrastructure safety across Europe was undertaken to identify the main types of road infrastructure-related risks, using key resources and publications such as the European Road Safety Observatory (ERSO), The Handbook of Road Safety Measures (Elvik et al., 2009), the iRAP toolkit and the SWOV factsheets, to name a few. The taxonomy developed contained 59 specific risk factors within 16 general risk factors, all within 10 infrastructure elements. In addition to this, stakeholder consultations in the form of a series of workshops were undertaken to prioritise risk factors (‘hot topics’) based on the feedback from the stakeholders on which risk factors they considered to be the most important or most relevant in terms of road infrastructure safety. The stakeholders who attended the workshops had a wide range of backgrounds (e.g. government, industry, research, relevant consumer organisations etc.) and a wide range of interests and knowledge. The identified ‘hot topics’ were ranked in terms of importance (i.e. which would have the greatest effect on road safety). SafetyCube analysis will put the greatest emphasis on these topics (e.g. pedestrian/cyclist safety, crossings, visibility, removing obstacles). To evaluate the scientific literature, a methodology was developed in Work Package 3 of the SafetyCube project. WP5 has applied this methodology to road infrastructure risk factors. This uniformed approach facilitated systematic searching of the scientific literature and consistent evaluation of the evidence for each risk factor. The method included a literature search strategy, a ‘coding template’ to record key data and metadata from individual studies, and guidelines for summarising the findings (Martensen et al, 2016b). The main databases used in the WP5 literature search were Scopus and TRID, with some risk factors utilising additional database searches (e.g. Google Scholar, Science Direct). Studies using crash data were considered highest priority. Where a high number of studies were found, further selection criteria were applied to ensure the best quality studies were included in the analysis (e.g. key meta-analyses, recent studies, country origin, importance). Once the most relevant studies were identified for a risk factor, each study was coded within a template developed in WP3. Information coded for each study included road system element, basic study information, road user group information, study design, measures of exposure, measures of outcomes and types of effects. The information in the coded templates will be included in the relational database developed to serve as the main source (‘back end’) of the Decision Support System (DSS) being developed for SafetyCube. Each risk factor was assigned a secondary coding partner who would carry out the control procedure and would discuss with the primary coding partner any coding issues they had found. Once all studies were coded for a risk factor, a synopsis was created, synthesising the coded studies and outlining the main findings in the form of meta-analyses (where possible) or another type of comprehensive synthesis (e.g. vote-count analysis). Each synopsis consists of three sections: a 2 page summary (including abstract, overview of effects and analysis methods); a scientific overview (short literature synthesis, overview of studies, analysis methods and analysis of the effects) and finally supporting documents (e.g. details of literature search and comparison of available studies in detail, if relevant). To enrich the background information in the synopses, in-depth accident investigation data from a number of sources across Europe (i.e. GIDAS, CARE/CADaS) was sourced. Not all risk factors could be enhanced with this data, but where it was possible, the aim was to provide further information on the type of crash scenarios typically found in collisions where specific infrastructure-related risk factors are present. If present, this data was included in the synopsis for the specific risk factor. After undertaking the literature search and coding of the studies, it was found that for some risk factors, not enough detailed studies could be found to allow a synopsis to be written. Therefore, the revised number of specific risk factors that did have a synopsis written was 37, within 7 infrastructure elements. Nevertheless, the coded studies on the remaining risk factors will be included in the database to be accessible by the interested DSS users. At the start of each synopsis, the risk factor is assigned a colour code, which indicates how important this risk factor is in terms of the amount of evidence demonstrating its impact on road safety in terms of increasing crash risk or severity. The code can either be Red (very clear increased risk), Yellow (probably risky), Grey (unclear results) or Green (probably not risky). In total, eight risk factors were given a Red code (e.g. traffic volume, traffic composition, road surface deficiencies, shoulder deficiencies, workzone length, low curve radius), twenty were given a Yellow code (e.g. secondary crashes, risks associated with road type, narrow lane or median, roadside deficiencies, type of junction, design and visibility at junctions) seven were given a Grey code (e.g. congestion, frost and snow, densely spaced junctions etc.). The specific risk factors given the red code were found to be distributed across a range of infrastructure elements, demonstrating that the greatest risk is spread across several aspects of infrastructure design and traffic control. However, four ‘hot topics’ were rated as being risky, which were ‘small work-zone length’, ‘low curve radius’, ‘absence of shoulder’ and ‘narrow shoulder’. Some limitations were identified. Firstly, because of the method used to attribute colour code, it is in theory possible for a risk factor with a Yellow colour code to have a greater overall magnitude of impact on road safety than a risk factor coded Red. This would occur if studies reported a large impact of a risk factor but without sufficient consistency to allocate a red colour code. Road safety benefits should be expected from implementing measures to mitigate Yellow as well as Red coded infrastructure risks. Secondly, findings may have been limited by both the implemented literature search strategy and the quality of the studies identified, but this was to ensure the studies included were of sufficiently high quality to inform understanding of the risk factor. Finally, due to difficulties of finding relevant studies, it was not possible to evaluate the effects on road safety of all topics listed in the taxonomy. The next task of WP5 is to begin identifying measures that will counter the identified risk factors. Priority will be placed on investigating measures aimed to mitigate the risk factors identified as Red. The priority of risk factors in the Yellow category will depend on why they were assigned to this category and whether or not they are a hot topic

    Bridges of the BeltLine

    Get PDF
    As currently realized, the Atlanta BeltLine weaves under, over, and through a multitude of overpasses, footbridges, and tunnels. As in any city, this significant feature is simultaneously an asset and a potential hazard. These types of structures are "vulnerable critical facilities" that should be included in emergency risk assessments and mitigation planning (FEMA, 2013). As such, the Bridges of the BeltLine project was proposed as a mixed-methods study to understand how people's movement along the BeltLine can inform emergency management mitigation, planning, and response. Understanding pedestrian flow in cities has been underfunded and understudied but is nonetheless critical to city infrastructure monitoring and improvement projects. This study focused on developing inexpensive, low-power consumption sensors capable of detecting human presence while preserving privacy, as well as a survey designed to collect data that the sensors cannot. The survey data were intended to describe BeltLine users, querying on demographics, reasons, frequency, duration of use, and mode of travel to and on the BeltLine. After conferring with the Atlanta BeltLine, Inc. (ABI) leadership, it became apparent that ABI's primary interest is in understanding which communities are being served by the BeltLine and whether it has changed commuting and travel behaviors or created new demand. As a result, the project's original focus on emergency management was expanded to explore which communities are being served and for what kind of use. As such, the project's revised objective was two-fold: to facilitate understanding of (a) whether the BeltLine is serving the adjacent communities and purpose of use and (b) to inform emergency mitigation, planning, and response.This research was made possible by a grant from Georgia Tech's Executive Vice President of Research, Small Bets Seed Grants program, with supplemental funding from the Center for the Development and Application of Internet of Things Technologies (CDAIT)

    Design study of plasma targets for laser driven wakefield acceleration experiments

    Get PDF
    In this work, a characterisation conducted in the SPARC_LAB (LNF-INFN) laboratories on some plasma targets, i.e. different nozzle geometries and different types of capillaries, is presented. The main goal of the work is the study and the realisation of the plasma guiding process of a laser pulse, inside a plasma-filled capillary discharge. This technique is necessary to increase the acceleration length and thus the energy gain of the accelerated beam, in the external-injection scheme of the Laser Wake Field Acceleration (LWFA). Plasma density is a characteristic of fundamental importance as it determines both the guiding and the acceleration process. Two different methods of plasma density measurement, interferometric and spectroscopic, are therefore reported. Preliminary studies of new techniques for the diagnostics of plasma inside channels and new schemes for the delivery/extraction of laser pulses inside capillaries are proposed. All topics covered include theoretical study, one-dimensional and/or fluid-dynamic simulations, and experimental data

    Coupling road vehicle aerodynamics and dynamics in simulation

    Get PDF
    A fully coupled system in which a vehicle s aerodynamic and handling responses can be simulated has been designed and evaluated using a severe crosswind test. Simulations of this type provide vehicle manufacturers with a useful alternative to on road tests, which are usually performed at a late stage in the development process with a proto- type vehicle. The proposed simulations could be performed much earlier and help to identify and resolve any aerodynamic sensitivities and safety concerns before significant resources are place in the design. It was shown that for the simulation of an artificial, on-track crosswind event, the use of the fully coupled system was unnecessary. A simplified, one-way coupled system, in which there is no feedback from the vehicle s dynamics to the aerodynamic simulation was sufficient in order to capture the vehicle s path deviation. The realistic properties of the vehicle and accurately calibrated driver model prevented any large attitude changes whilst immersed in the gust, from which variations to the aerodynamics could arise. It was suggested that this system may be more suited to other vehicle geometries more sensitive to yaw motions or applications where a high positional accuracy of the vehicle is required

    Aeronautical engineering: A continuing bibliography (supplement 152)

    Get PDF
    The bibliography lists 338 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1982
    • 

    corecore