130 research outputs found

    Worm epidemics in vehicular networks

    Get PDF
    Connected vehicles promise to enable a wide range of new automotive services that will improve road safety, ease traffic management, and make the overall travel experience more enjoyable. However, they also open significant new surfaces for attacks on the electronics that control most of modern vehicle operations. In particular, the emergence of vehicle-to-vehicle (V2V) communication risks to lay fertile ground for self-propagating mobile malware that targets automobile environments. In this work, we perform a first study on the dynamics of vehicular malware epidemics in a large-scale road network, and unveil how a reasonably fast worm can easily infect thousands of vehicles in minutes. We determine how such dynamics are affected by a number of parameters, including the diffusion of the vulnerability, the penetration ratio and range of the V2V communication technology, or the worm self-propagation mechanism. We also propose a simple yet very effective numerical model of the worm spreading process, and prove it to be able to mimic the results of computationally expensive network simulations. Finally, we leverage the model to characterize the dangerousness of the geographical location where the worm is first injected, as well as for efficient containment of the epidemics through the cellular network.Peer ReviewedPostprint (author’s final draft

    Information dissemination in mobile networks

    Get PDF
    This thesis proposes some solutions to relieve, using Wi-Fi wireless networks, the data consumption of cellular networks using cooperation between nodes, studies how to make a good deployment of access points to optimize the dissemination of contents, analyzes some mechanisms to reduce the nodes' power consumption during data dissemination in opportunistic networks, as well as explores some of the risks that arise in these networks. Among the applications that are being discussed for data off-loading from cellular networks, we can find Information Dissemination in Mobile Networks. In particular, for this thesis, the Mobile Networks will consist of Vehicular Ad-hoc Networks and Pedestrian Ad-Hoc Networks. In both scenarios we will find applications with the purpose of vehicle-to-vehicle or pedestrian-to-pedestrian Information dissemination, as well as vehicle-to-infrastructure or pedestrian-to-infrastructure Information dissemination. We will see how both scenarios (vehicular and pedestrian) share many characteristics, while on the other hand some differences make them unique, and therefore requiring of specific solutions. For example, large car batteries relegate power saving techniques to a second place, while power-saving techniques and its effects to network performance is a really relevant issue in Pedestrian networks. While Cellular Networks offer geographically full-coverage, in opportunistic Wi-Fi wireless solutions the short-range non-fullcoverage paradigm as well as the high mobility of the nodes requires different network abstractions like opportunistic networking, Disruptive/Delay Tolerant Networks (DTN) and Network Coding to analyze them. And as a particular application of Dissemination in Mobile Networks, we will study the malware spread in Mobile Networks. Even though it relies on similar spreading mechanisms, we will see how it entails a different perspective on Dissemination

    Implementation of Efficient Cooperative Message Authentication for Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular Ad-Hoc Network(VANET) is a potential area in research field to bestow Intelligent Transportation System (ITS) services to the end users. It is a exigent topic for its high mobility and frequent network distraction. Lately researchers are carrying out task on many specific issues related to VANET like routing, broadcasting, Quality of Service (QoS), security, architectures, applications, protocols, etc. The augment in vehicles in today’s life has lead to brutal road accidents and traffic jam in urban areas. One of the solution to this problem could be a means of communication between the vehicles for safety. Safety measures lack these days in VANET as malicious drivers in the network disrupt the system routine. In this paper , a new location Based Secure Routing Protocol( PBSRP) which is a hybrid of Most Forward within Radius and Border Node based Most Forward within Radius (B-MFR) routing protocols. A module for security is implemented in this protocol using station to station key agreement protocol for preventing system from several attacks. The module goes through three phases: initialization phase, optimal node selection phase and secure data delivery phase. The outcome of Simulation imparts that PBSRP has better performance than MFR in terms of end to end delay and packet delivery ratio when malicious drivers are included in the network

    Reducing congestion in obstructed highways with traffic data dissemination using adhoc vehicular networks

    Get PDF
    Vehicle-to-vehicle communications can be used effectively for intelligent transport systems (ITSs) and location-aware services. The ability to disseminate information in an ad hoc fashion allows pertinent information to propagate faster through a network. In the realm of ITS, the ability to spread warning information faster and further is of great advantage to receivers. In this paper we propose and present a message-dissemination procedure that uses vehicular wireless protocols to influence vehicular flow, reducing congestion in road networks. The computational experiments we present show how a car-following model and lane-change algorithm can be adapted to “react” to the reception of information. This model also illustrates the advantages of coupling together with vehicular flow modelling tools and network simulation tools

    Optimal Control of Epidemics in the Presence of Heterogeneity

    Get PDF
    We seek to identify and address how different types of heterogeneity affect the optimal control of epidemic processes in social, biological, and computer networks. Epidemic processes encompass a variety of models of propagation that are based on contact between agents. Assumptions of homogeneity of communication rates, resources, and epidemics themselves in prior literature gloss over the heterogeneities inherent to such networks and lead to the design of sub-optimal control policies. However, the added complexity that comes with a more nuanced view of such networks complicates the generalizing of most prior work and necessitates the use of new analytical methods. We first create a taxonomy of heterogeneity in the spread of epidemics. We then model the evolution of heterogeneous epidemics in the realms of biology and sociology, as well as those arising from practice in the fields of communication networks (e.g., DTN message routing) and security (e.g., malware spread and patching). In each case, we obtain computational frameworks using Pontryagin’s Maximum Principle that will lead to the derivation of dynamic controls that optimize general, context-specific objectives. We then prove structures for each of these vectors of optimal controls that can simplify the derivation, storage, and implementation of optimal policies. Finally, using simulations and real-world traces, we examine the benefits achieved by including heterogeneity in the control decision, as well as the sensitivity of the models and the controls to model parameters in each case

    ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS NETWORK PROTOCOLS

    Get PDF
    Several newly emerged wireless technologies (e.g., Internet-of-Things, Bluetooth, NFC)—extensively backed by the tech industry—are being widely adopted and have resulted in a proliferation of diverse smart appliances and gadgets (e.g., smart thermostat, wearables, smartphones), which has ensuingly shaped our modern digital life. These technologies include several communication protocols that usually have stringent requirements stated in their specifications. Failing to comply with such requirements can result in incorrect behaviors, interoperability issues, or even security vulnerabilities. Moreover, lack of robustness of the protocol implementation to malicious attacks—exploiting subtle vulnerabilities in the implementation—mounted by the compromised nodes in an adversarial environment can limit the practical utility of the implementation by impairing the performance of the protocol and can even have detrimental effects on the availability of the network. Even having a compliant and robust implementation alone may not suffice in many cases because these technologies often expose new attack surfaces as well as new propagation vectors, which can be exploited by unprecedented malware and can quickly lead to an epidemic
    corecore