128,572 research outputs found

    MODELING THE INFORMATION QUALITY OF OBJECT TRACKING SYSTEMS

    Get PDF
    Advances in information and communication technologies, such as Radio Frequency Identification (RFID), mobile and wireless mesh networks, bring us closer to the vision of “Internet of Things”, a global network of people, products or objects that can be easily readable, recognizable, locatable, and manageable over the world wide web. Such a network can provide ubiquitous and real-time information on movements of objects; and object tracking systems monitor the moving objects and register their on-going location in the context of higher-level applications, such as supply chain management, food traceability and retail, where monitoring of objects is required. This paper investigates information quality of object tracking systems and proposes an analytical model that measures the degree of information completeness of object tracking systems based on the scope and depth of their data capturing capabilities. We demonstrate that the information completeness of object tracking systems is influenced by the configuration of object tracking systems. The model may be used for both ex-ante and ex-post evaluations of object tracking systems, under the auspices of their information quality requirements, considering that their use is expected to blossom in the “Internet-of- Things” era

    Machine learning paradigms for modeling spatial and temporal information in multimedia data mining

    Get PDF
    Multimedia data mining and knowledge discovery is a fast emerging interdisciplinary applied research area. There is tremendous potential for effective use of multimedia data mining (MDM) through intelligent analysis. Diverse application areas are increasingly relying on multimedia under-standing systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, machine learning, pattern recognition, multimedia databases, and smart sensors. The main mission of this special issue is to identify state-of-the-art machine learning paradigms that are particularly powerful and effective for modeling and combining temporal and spatial media cues such as audio, visual, and face information and for accomplishing tasks of multimedia data mining and knowledge discovery. These models should be able to bridge the gap between low-level audiovisual features which require signal processing and high-level semantics. A number of papers have been submitted to the special issue in the areas of imaging, artificial intelligence; and pattern recognition and five contributions have been selected covering state-of-the-art algorithms and advanced related topics. The first contribution by D. Xiang et al. “Evaluation of data quality and drought monitoring capability of FY-3A MERSI data” describes some basic parameters and major technical indicators of the FY-3A, and evaluates data quality and drought monitoring capability of the Medium-Resolution Imager (MERSI) onboard the FY-3A. The second contribution by A. Belatreche et al. “Computing with biologically inspired neural oscillators: application to color image segmentation” investigates the computing capabilities and potential applications of neural oscillators, a biologically inspired neural model, to gray scale and color image segmentation, an important task in image understanding and object recognition. The major contribution of this paper is the ability to use neural oscillators as a learning scheme for solving real world engineering problems. The third paper by A. Dargazany et al. entitled “Multibandwidth Kernel-based object tracking” explores new methods for object tracking using the mean shift (MS). A bandwidth-handling MS technique is deployed in which the tracker reach the global mode of the density function not requiring a specific staring point. It has been proven via experiments that the Gradual Multibandwidth Mean Shift tracking algorithm can converge faster than the conventional kernel-based object tracking (known as the mean shift). The fourth contribution by S. Alzu’bi et al. entitled “3D medical volume segmentation using hybrid multi-resolution statistical approaches” studies new 3D volume segmentation using multiresolution statistical approaches based on discrete wavelet transform and hidden Markov models. This system commonly reduced the percentage error achieved using the traditional 2D segmentation techniques by several percent. Furthermore, a contribution by G. Cabanes et al. entitled “Unsupervised topographic learning for spatiotemporal data mining” proposes a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency Identification (RFID) data. The new unsupervised algorithm depicted in this article is an efficient data mining tool for behavioral studies based on RFID technology. It has the ability to discover and compare stable patterns in a RFID signal, and is appropriate for continuous learning. Finally, we would like to thank all those who helped to make this special issue possible, especially the authors and the reviewers of the articles. Our thanks go to the Hindawi staff and personnel, the journal Manager in bringing about the issue and giving us the opportunity to edit this special issue

    A pattern-based approach to a cell tracking ontology

    No full text
    Time-lapse microscopy has thoroughly transformed our understanding of biological motion and developmental dynamics from single cells to entire organisms. The increasing amount of cell tracking data demands the creation of tools to make extracted data searchable and interoperable between experiment and data types. In order to address that problem, the current paper reports on the progress in building the Cell Tracking Ontology (CTO): An ontology framework for describing, querying and integrating data from complementary experimental techniques in the domain of cell tracking experiments. CTO is based on a basic knowledge structure: the cellular genealogy serving as a backbone model to integrate specific biological ontologies into tracking data. As a first step we integrate the Phenotype and Trait Ontology (PATO) as one of the most relevant ontologies to annotate cell tracking experiments. The CTO requires both the integration of data on various levels of generality as well as the proper structuring of collected information. Therefore, in order to provide a sound foundation of the ontology, we have built on the rich body of work on top-level ontologies and established three generic ontology design patterns addressing three modeling challenges for properly representing cellular genealogies, i.e. representing entities existing in time, undergoing changes over time and their organization into more complex structures such as situations

    Automated 3D data collection (A3DDC) for 3D building information modeling

    Get PDF

    Modeling of Traceability Information System for Material Flow Control Data.

    Get PDF
    This paper focuses on data modeling for traceability of material/work flow in information layer of manufacturing control system. The model is able to trace all associated data throughout the product manufacturing from order to final product. Dynamic data processing of Quality and Purchase activities are considered in data modeling as well as Order and Operation base on lots particulars. The modeling consisted of four steps and integrated as one final model. Entity-Relationships Modeling as data modeling methodology is proposed. The model is reengineered with Toad Data Modeler software in physical modeling step. The developed model promises to handle fundamental issues of a traceability system effectively. It supports for customization and real-time control of material in flow in all levels of manufacturing processes. Through enhanced visibility and dynamic store/retrieval of data, all traceability usages and applications is responded. Designed solution is initially applicable as reference data model in identical lot-base traceability system
    corecore