11,651 research outputs found

    Life is short. The impact of power states on base station lifetime

    Get PDF
    We study the impact of power state transitions on the lifetime of base stations (BSs) in mobile networks. In particular, we propose a model to estimate the lifetime decrease/increase as a consequence of the application of power state changes. The model takes into account both hardware (HW) parameters, which depend on the materials used to build the device, and power state parameters, that instead depend on how and when power state transitions take place. More in depth, we consider the impact of different power states when a BS is active, and one sleep mode state when a BS is powered off. When a BS reduces the power consumption, its lifetime tends to increase. However, when a BS changes the power state, its lifetime tends to be decreased. Thus, there is a tradeoff between these two effects. Our results, obtained over universal mobile telecommunication system (UMTS) and long term evolution (LTE) case studies, indicate the need of a careful management of the power state transitions in order to not deteriorate the BS lifetime, and consequently to not increase the associated reparation/replacement costs

    Saving Energy in Mobile Devices for On-Demand Multimedia Streaming -- A Cross-Layer Approach

    Full text link
    This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interfaces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.Comment: Accepted in ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP), November 201

    A Novel Multiobjective Cell Switch-Off Framework for Cellular Networks

    Get PDF
    Cell Switch-Off (CSO) is recognized as a promising approach to reduce the energy consumption in next-generation cellular networks. However, CSO poses serious challenges not only from the resource allocation perspective but also from the implementation point of view. Indeed, CSO represents a difficult optimization problem due to its NP-complete nature. Moreover, there are a number of important practical limitations in the implementation of CSO schemes, such as the need for minimizing the real-time complexity and the number of on-off/off-on transitions and CSO-induced handovers. This article introduces a novel approach to CSO based on multiobjective optimization that makes use of the statistical description of the service demand (known by operators). In addition, downlink and uplink coverage criteria are included and a comparative analysis between different models to characterize intercell interference is also presented to shed light on their impact on CSO. The framework distinguishes itself from other proposals in two ways: 1) The number of on-off/off-on transitions as well as handovers are minimized, and 2) the computationally-heavy part of the algorithm is executed offline, which makes its implementation feasible. The results show that the proposed scheme achieves substantial energy savings in small cell deployments where service demand is not uniformly distributed, without compromising the Quality-of-Service (QoS) or requiring heavy real-time processing

    Planning Solar in Energy-managed Cellular Networks

    Get PDF
    There has been a lot of interest recently on the energy efficiency and environmental impact of wireless networks. Given that the base stations are the network elements that use most of this energy, much research has dealt with ways to reduce the energy used by the base stations by turning them off during periods of low load. In addition to this, installing a solar harvesting sys- tem composed of solar panels, batteries, charge con- trollers and inverters is another way to further reduce the network environmental impact and some research has been dealing with this for individual base stations. In this paper, we show that both techniques are tightly coupled. We propose a mathematical model that captures the synergy between solar installation over a network and the dynamic operation of energy-managed base stations. We study the interactions between the two methods for networks of hundreds of base stations and show that the order in which each method is intro- duced into the system does make a difference in terms of cost and performance. We also show that installing solar is not always the best solution even when the unit cost of the solar energy is smaller than the grid cost. We conclude that planning the solar installation and energy management of the base stations have to be done jointly

    Watts2Share: Energy-Aware Traffic Consolidation

    Full text link
    Energy consumption is becoming the Achilles' heel of the mobile user quality of experience partly due to undisciplined use of the cellular (3G) transmissions by applications. The operator infrastructure is typically configured for peak performance, whereas during periods of underutilisation the handsets pay the price by staying in high energy states even if each application only uses a fraction of the maximum available bandwidth. In this paper we promote a bi-radio scenario where instead of independently using own cellular connections, several users share a single cellular link offered by one member of a coalition (a rotating aggregator). We present Watts2Share, an architecture for energy-aware traffic consolidation whereby group members' data flows transmitted through a second radio (e.g., WiFi) are aggregated by the aggregator and retransmitted through the cellular link. Through careful and repeatable studies we demonstrate that this scheme saves up to 68% of the total transmission energy in handsets compared to a pure 3G scenario. The studies are based on a wide range of real traffic traces and real cellular operator settings, and further illustrate that this scheme reduces the overall energy by reducing the signalling overhead, as well as extending the lifetime of all handsets

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well
    • …
    corecore