291,408 research outputs found

    Semantic Web-based Software Product Line for Building Intelligent Tutoring Systems

    Get PDF
    Intelligent Tutoring Systems (ITS) have been assumed as an important learning resource to be added as a module in e-learning systems. However, the construction of such systems is still a hard and complex task that involves, for instance, representation and manipulation of different knowledge source. To alleviate these issues, this paper proposes a new approach for building ITS by integrating Software Product Line and Semantic Web technologies focusing on two software engineering aspects: large-scale production and customization for different learners, and how to allow these knowledge to be automatically shared between software and authors in both reuse and knowledge evolution points of view. This paper shows a modeling for the proposed product line, as well as how the Semantic Web technologies was used to achieve the effective shared knowledge

    Intelligent Decision Support Systems- A Framework

    Get PDF
    Information technology applications that support decision-making processes and problem- solving activities have thrived and evolved over the past few decades. This evolution led to many different types of Decision Support System (DSS) including Intelligent Decision Support System (IDSS). IDSS include domain knowledge, modeling, and analysis systems to provide users the capability of intelligent assistance which significantly improves the quality of decision making. IDSS includes knowledge management component which stores and manages a new class of emerging AI tools such as machine learning and case-based reasoning and learning. These tools can extract knowledge from previous data and decisions which give DSS capability to support repetitive, complex real-time decision making.  This paper attempts to assess the role of IDSS in decision making. First, it explores the definitions and understanding of DSS and IDSS. Second, this paper illustrates a framework of IDSS along with various tools and technologies that support it. Keywords: Decision Support Systems, Data Warehouse, ETL, Data Mining, OLAP, Groupware, KDD, IDS

    Deep learning for knowledge tracing in learning analytics: An overview

    Get PDF
    Learning Analytics (LA) is a recent research branch that refers to methods for measuring, collecting, analyzing, and reporting learners’ data, in order to better understand and optimize the processes and the environments. Knowledge Tracing (KT) deals with the modeling of the evolution, during the time, of the students’ learning process. Particularly its aim is to predict students’ outcomes in order to avoid failures and to support both students and teachers. Recently, KT has been tackled by exploiting Deep Learning (DL) models and generating a new, ongoing, research line that is known as Deep Knowledge Tracing (DKT). This was made possible by the digitalization process that has simplified the gathering of educational data from many different sources such as online learning platforms, intelligent objects, and mainstream IT-based systems for education. DKT predicts the student’s performances by using the information embedded in the collected data. Moreover, it has been shown to be able to outperform the state-of-the-art models for KT. In this paper, we briefly describe the most promising DL models, by focusing on their prominent contribution in solving the KT task

    Deep learning for knowledge tracing in learning analytics: An overview

    Get PDF
    Learning Analytics (LA) is a recent research branch that refers to methods for measuring, collecting, analyzing, and reporting learners’ data, in order to better understand and optimize the processes and the environments. Knowledge Tracing (KT) deals with the modeling of the evolution, during the time, of the students’ learning process. Particularly its aim is to predict students’ outcomes in order to avoid failures and to support both students and teachers. Recently, KT has been tackled by exploiting Deep Learning (DL) models and generating a new, ongoing, research line that is known as Deep Knowledge Tracing (DKT). This was made possible by the digitalization process that has simplified the gathering of educational data from many different sources such as online learning platforms, intelligent objects, and mainstream IT-based systems for education. DKT predicts the student’s performances by using the information embedded in the collected data. Moreover, it has been shown to be able to outperform the state-of-the-art models for KT. In this paper, we briefly describe the most promising DL models, by focusing on their prominent contribution in solving the KT task

    Bridging knowing and proving in mathematics An essay from a didactical perspective

    No full text
    Text of a talk at the conference "Explanation and Proof in Mathematics: Philosophical and Educational Perspective" held in Essen in November 2006International audienceThe learning of mathematics starts early but remains far from any theoretical considerations: pupils' mathematical knowledge is first rooted in pragmatic evidence or conforms to procedures taught. However, learners develop a knowledge which they can apply in significant problem situations, and which is amenable to falsification and argumentation. They can validate what they claim to be true but using means generally not conforming to mathematical standards. Here, I analyze how this situation underlies the epistemological and didactical complexities of teaching mathematical proof. I show that the evolution of the learners' understanding of what counts as proof in mathematics implies an evolution of their knowing of mathematical concepts. The key didactical point is not to persuade learners to accept a new formalism but to have them understand how mathematical proof and statements are tightly related within a common framework; that is, a mathematical theory. I address this aim by modeling the learners' way of knowing in terms of a dynamic, homeostatic system. I discuss the roles of different semiotic systems, of the types of actions the learners perform and of the controls they implement in constructing or validating knowledge. Particularly with modern technological aids, this model provides a basis designing didactical situations to help learners bridge the gap between pragmatics and theory
    corecore