4,071 research outputs found

    Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon: heparan sulfate interaction

    Get PDF
    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

    Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton

    Get PDF
    Viruses have a dual nature: particles are “passive substances” lacking chemical energy transformation, whereas infected cells are “active substances” turning-over energy. How passive viral substances convert to active substances, comprising viral replication and assembly compartments has been of intense interest to virologists, cell and molecular biologists and immunologists. Infection starts with virus entry into a susceptible cell and delivers the viral genome to the replication site. This is a multi-step process, and involves the cytoskeleton and associated motor proteins. Likewise, the egress of progeny virus particles from the replication site to the extracellular space is enhanced by the cytoskeleton and associated motor proteins. This overcomes the limitation of thermal diffusion, and transports virions and virion components, often in association with cellular organelles. This review explores how the analysis of viral trajectories informs about mechanisms of infection. We discuss the methodology enabling researchers to visualize single virions in cells by fluorescence imaging and tracking. Virus visualization and tracking are increasingly enhanced by computational analyses of virus trajectories as well as in silico modeling. Combined approaches reveal previously unrecognized features of virus-infected cells. Using select examples of complementary methodology, we highlight the role of actin filaments and microtubules, and their associated motors in virus infections. In-depth studies of single virion dynamics at high temporal and spatial resolutions thereby provide deep insight into virus infection processes, and are a basis for uncovering underlying mechanisms of how cells function

    Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging

    Get PDF
    Small interfering RNA (siRNA) molecules are potent effectors of post-transcriptional gene silencing. Using noninvasive bioluminescent imaging and a mathematical model of siRNA delivery and function, the effects of target-specific and treatment-specific parameters on siRNA-mediated gene silencing are monitored in cells stably expressing the firefly luciferase protein. In vitro, luciferase protein levels recover to pre-treatment values within <1 week in rapidly dividing cell lines, but take longer than 3 weeks to return to steady-state levels in nondividing fibroblasts. Similar results are observed in vivo, with knockdown lasting ~10 days in subcutaneous tumors in A/J mice and 3–4 weeks in the nondividing hepatocytes of BALB/c mice. These data indicate that dilution due to cell division, and not intracellular siRNA half-life, governs the duration of gene silencing under these conditions. To demonstrate the practical use of the model in treatment design, model calculations are used to predict the dosing schedule required to maintain persistent silencing of target proteins with different half-lives in rapidly dividing or nondividing cells. The approach of bioluminescent imaging combined with mathematical modeling provides useful insights into siRNA function and may help expedite the translation of siRNA into clinically relevant therapeutics for disease treatment and management

    The Role of γ-Secretase in Human Papillomavirus Infection

    Get PDF
    Human papillomaviruses (HPV) are important pathogens that cause 5% of all human cancers worldwide, including essentially all cases of cervical cancer. Prophylactic vaccines against HPV exist, however these are not widely utilized in all communities, cannot cure existing infection, and do not protect against all subtypes. Therefore, study of HPV infection may lead to important new therapeutics to reduce the spread of the virus and disease burden. In addition, thorough investigation of HPV infection is likely to provide new insights into many aspects of cell biology and biochemistry, as the study of viruses has in the past. HPV requires multiple cellular proteins for proper viral trafficking during virus entry, including both γ-secretase and retromer. γ-secretase is a complex of four cellular transmembrane (TM) proteins that typically binds to and cleaves TM proteins within their TM domain. During HPV infection, γ-secretase binds to the viral capsid protein L2 and facilitates its insertion into the endosomal membrane. As a result of L2 insertion, L2 protrudes into the cytoplasm, a vital step in infection that allows HPV to bind other cellular factors such as retromer. Retromer is a cytoplasmic complex of three proteins that binds to and sorts cellular cargo and HPV into the retrograde trafficking pathway. In this thesis, we further characterize the interaction between γ-secretase and HPV L2. We show that γ-secretase is required for membrane protrusion of L2 and that L2 associates strongly with the PS1 catalytic subunit of γ-secretase. HPV infection also stabilizes the γ-secretase complex. Mutational studies of a putative TM domain in HPV16 L2 revealed that it cannot be replaced with a foreign TM domain, that infectivity of HPV TM mutants is tightly correlated with γ-secretase binding and stabilization, and that the L2 TM domain is required for protrusion of the L2 protein into the cytoplasm. Additionally, we show that retromer and γ-secretase interact in infected and uninfected cells, and that both proteins are required for L2 protrusion into the cytoplasm. Retromer binding to L2 is required for the interaction between L2 and γ-secretase and for γ-secretase stabilization. Constitutively active Rab7, which causes retromer to remain associated with L2 on the endosomal membrane, affects complex formation between γ-secretase and L2. Finally, γ-secretase activity is required for the trafficking of a cellular retromer cargo, DMT1-II. These results provide new insight into the interaction between γ-secretase and L2 and highlight the importance of the native L2 TM domain for proper HPV trafficking during virus entry. They also show that γ-secretase and retromer cooperate to mediate L2 membrane insertion, and suggest that binding to a cytoplasmic protein other than retromer can stabilize L2 in the endosomal membrane. Furthermore, interactions between γ-secretase and retromer may be important for the normal sorting activity of retromer. Overall, my work in the DiMaio lab highlights the importance of γ-secretase, the HPV L2 transmembrane domain, and the interaction between γ-secretase and retromer in HPV infection. Our results highlight that detailed mechanistic analysis of individual steps in viral entry lead to discoveries that can identify novel functions of proteins that are important for cellular biology

    Cell Entry and Trafficking of Human Adenovirus Bound to Blood Factor X Is Determined by the Fiber Serotype and Not Hexon:Heparan Sulfate Interaction

    Get PDF
    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon∶FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

    Modulation of HIV-1-host interaction: role of the Vpu accessory protein

    Get PDF
    Viral protein U (Vpu) is a type 1 membrane-associated accessory protein that is unique to human immunodeficiency virus type 1 (HIV-1) and a subset of related simian immunodeficiency virus (SIV). The Vpu protein encoded by HIV-1 is associated with two primary functions during the viral life cycle. First, it contributes to HIV-1-induced CD4 receptor downregulation by mediating the proteasomal degradation of newly synthesized CD4 molecules in the endoplasmic reticulum (ER). Second, it enhances the release of progeny virions from infected cells by antagonizing Tetherin, an interferon (IFN)-regulated host restriction factor that directly cross-links virions on host cell-surface. This review will mostly focus on recent advances on the role of Vpu in CD4 downregulation and Tetherin antagonism and will discuss how these two functions may have impacted primate immunodeficiency virus cross-species transmission and the emergence of pandemic strain of HIV-1

    Adenovirus Recruits Dynein by an Evolutionary Novel Mechanism Involving Direct Binding to pH-Primed Hexon

    Get PDF
    Following receptor-mediated uptake into endocytic vesicles and escape from the endosome, adenovirus is transported by cytoplasmic dynein along microtubules to the perinuclear region of the cell. How motor proteins are recruited to viruses for their own use has begun to be investigated only recently. We review here the evidence for a role for dynein and other motor proteins in adenovirus infectivity. We also discuss the implications of recent studies on the mechanism of dynein recruitment to adenovirus for understanding the relationship between pathogenic and physiological cargo recruitment and for the evolutionary origins of dynein-mediated adenovirus transport
    • …
    corecore