6,923 research outputs found

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    DARIAH and the Benelux

    Get PDF

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models

    Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    Get PDF
    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting

    Store Working Memory Networks for Storage and Recall of Arbitrary Temporal Sequences

    Full text link
    Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.Air Force Office of Scientific Research (90-0128, F49620-92-J-0225); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309); British Petroleum (89A-1204); Advanced Research Projects Agency (90-0083, N00014-92-J-4015); National Science Foundation (IRI-90-00539

    Information technology as boundary object for transformational learning

    Get PDF
    Collaborative work is considered as a way to improve productivity and value generation in construction. However, recent research demonstrates that socio-cognitive factors related to fragmentation of specialized knowledge may hinder team performance. New methods based on theories of practice are emerging in Computer Supported Collaborative Work and organisational learning to break these knowledge boundaries, facilitating knowledge sharing and the generation of new knowledge through transformational learning. According to these theories, objects used in professional practice play a key role in mediating interactions. Rules and methods related to these practices are also embedded in these objects. Therefore changing collaborative patterns demand reconfiguring objects that are at the boundary between specialized practices, namely boundary objects. This research is unique in presenting an IT strategy in which technology is used as a boundary object to facilitate transformational learning in collaborative design work
    • 

    corecore