1,409 research outputs found

    Bioactive Self-Assembled Protein Nanosheets for Stem Cell-Based Biotechnologies

    Get PDF
    Tissue and stem cell culture methods have been dominated by glass and plastic substrates such as Tissue culture plastic. These solid substrates, although widely used, are associated with poor scalability for adherent stem cell expansion in systems such as 3D bioreactors and the design of parallel culture systems. Therefore, investigating strategies to bypass these obstacles in stem cell expansion is essential to enable the wider translation of stem cell technologies. An alternative strategy recently proposed consists in using a liquid surface instead, such as an oil, and associated oil droplets. Indeed, emulsions can be formed using protein nanosheets to stabilise oil/water interfaces to promote the adhesion of stem cells and enable their proliferation. These nanosheets exhibit enhanced interfacial mechanics and allow the introduction of bioactive components via recombinant protein expression to promote bioactivity. Beyond the application of resulting bioemulsions for the expansion of Mesenchymal stem cells, the impact of these bioactive interfaces on the differentiation of iPSCs and the development of cerebral organoids will be presented. The Bovine serum albumin protein was recombinantly modified to attach an N-terminal Avi-Tag, this was expressed and purified from the yeast P. pastoris expression system. The Avi-tag was then biotinylated in vitro by recombinantly expressed BirA. Emulsions of a specific size were formed using the newly biotinylated Bt-BSA protein and functionalized with a cascade of components to mimic cell-cell ligands, this resulted in bioemulsions with a bioactive surface that can interact with surrounding cells. These functionalised droplets were integrated into developing cerebral organoids and their impact on phenotype was studied. The droplets were found not to deform sufficiently to allow mechanical forces to be measured, yet the many of these droplets were retained within the organoids which led to an interesting phenotype within the organoids. The developing rosettes were found to develop enlarged lumens shown by an increase in area, this phenotype did not impact the differentiation into the cerebral lineage depicted by immunohistochemistry of hallmark marker of neuronal differentiation within organoids retaining droplets. The interfacial mechanics of fibrinogen nanosheets treated with varying concentrations of thrombin was studied using interfacial shear rheology. The effect of thrombin significantly altered the interfacial mechanics with the lower concentration of thrombin significantly increasing the toughness multiple folds and decreasing the elasticity of the nanosheets. Additionally, the nanostructure of nanosheets was studied using SEM and TEM and traditional fibrin fibres were found to not form at these interfaces, but local rearrangements and retractions in the thrombin treated nanosheets were observed. Finally, these enhanced mechanical properties promoted the proliferation and expansion of Mesenchymal stem cells on quasi-2D and 3D interfaces

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF

    Converging organoids and extracellular matrix::New insights into liver cancer biology

    Get PDF
    Primary liver cancer, consisting primarily of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a heterogeneous malignancy with a dismal prognosis, resulting in the third leading cause of cancer mortality worldwide [1, 2]. It is characterized by unique histological features, late-stage diagnosis, a highly variable mutational landscape, and high levels of heterogeneity in biology and etiology [3-5]. Treatment options are limited, with surgical intervention the main curative option, although not available for the majority of patients which are diagnosed in an advanced stage. Major contributing factors to the complexity and limited treatment options are the interactions between primary tumor cells, non-neoplastic stromal and immune cells, and the extracellular matrix (ECM). ECM dysregulation plays a prominent role in multiple facets of liver cancer, including initiation and progression [6, 7]. HCC often develops in already damaged environments containing large areas of inflammation and fibrosis, while CCA is commonly characterized by significant desmoplasia, extensive formation of connective tissue surrounding the tumor [8, 9]. Thus, to gain a better understanding of liver cancer biology, sophisticated in vitro tumor models need to incorporate comprehensively the various aspects that together dictate liver cancer progression. Therefore, the aim of this thesis is to create in vitro liver cancer models through organoid technology approaches, allowing for novel insights into liver cancer biology and, in turn, providing potential avenues for therapeutic testing. To model primary epithelial liver cancer cells, organoid technology is employed in part I. To study and characterize the role of ECM in liver cancer, decellularization of tumor tissue, adjacent liver tissue, and distant metastatic organs (i.e. lung and lymph node) is described, characterized, and combined with organoid technology to create improved tissue engineered models for liver cancer in part II of this thesis. Chapter 1 provides a brief introduction into the concepts of liver cancer, cellular heterogeneity, decellularization and organoid technology. It also explains the rationale behind the work presented in this thesis. In-depth analysis of organoid technology and contrasting it to different in vitro cell culture systems employed for liver cancer modeling is done in chapter 2. Reliable establishment of liver cancer organoids is crucial for advancing translational applications of organoids, such as personalized medicine. Therefore, as described in chapter 3, a multi-center analysis was performed on establishment of liver cancer organoids. This revealed a global establishment efficiency rate of 28.2% (19.3% for hepatocellular carcinoma organoids (HCCO) and 36% for cholangiocarcinoma organoids (CCAO)). Additionally, potential solutions and future perspectives for increasing establishment are provided. Liver cancer organoids consist of solely primary epithelial tumor cells. To engineer an in vitro tumor model with the possibility of immunotherapy testing, CCAO were combined with immune cells in chapter 4. Co-culture of CCAO with peripheral blood mononuclear cells and/or allogenic T cells revealed an effective anti-tumor immune response, with distinct interpatient heterogeneity. These cytotoxic effects were mediated by cell-cell contact and release of soluble factors, albeit indirect killing through soluble factors was only observed in one organoid line. Thus, this model provided a first step towards developing immunotherapy for CCA on an individual patient level. Personalized medicine success is dependent on an organoids ability to recapitulate patient tissue faithfully. Therefore, in chapter 5 a novel organoid system was created in which branching morphogenesis was induced in cholangiocyte and CCA organoids. Branching cholangiocyte organoids self-organized into tubular structures, with high similarity to primary cholangiocytes, based on single-cell sequencing and functionality. Similarly, branching CCAO obtain a different morphology in vitro more similar to primary tumors. Moreover, these branching CCAO have a higher correlation to the transcriptomic profile of patient-paired tumor tissue and an increased drug resistance to gemcitabine and cisplatin, the standard chemotherapy regimen for CCA patients in the clinic. As discussed, CCAO represent the epithelial compartment of CCA. Proliferation, invasion, and metastasis of epithelial tumor cells is highly influenced by the interaction with their cellular and extracellular environment. The remodeling of various properties of the extracellular matrix (ECM), including stiffness, composition, alignment, and integrity, influences tumor progression. In chapter 6 the alterations of the ECM in solid tumors and the translational impact of our increased understanding of these alterations is discussed. The success of ECM-related cancer therapy development requires an intimate understanding of the malignancy-induced changes to the ECM. This principle was applied to liver cancer in chapter 7, whereby through a integrative molecular and mechanical approach the dysregulation of liver cancer ECM was characterized. An optimized agitation-based decellularization protocol was established for primary liver cancer (HCC and CCA) and paired adjacent tissue (HCC-ADJ and CCA-ADJ). Novel malignancy-related ECM protein signatures were found, which were previously overlooked in liver cancer transcriptomic data. Additionally, the mechanical characteristics were probed, which revealed divergent macro- and micro-scale mechanical properties and a higher alignment of collagen in CCA. This study provided a better understanding of ECM alterations during liver cancer as well as a potential scaffold for culture of organoids. This was applied to CCA in chapter 8 by combining decellularized CCA tumor ECM and tumor-free liver ECM with CCAO to study cell-matrix interactions. Culture of CCAO in tumor ECM resulted in a transcriptome closely resembling in vivo patient tumor tissue, and was accompanied by an increase in chemo resistance. In tumor-free liver ECM, devoid of desmoplasia, CCAO initiated a desmoplastic reaction through increased collagen production. If desmoplasia was already present, distinct ECM proteins were produced by the organoids. These were tumor-related proteins associated with poor patient survival. To extend this method of studying cell-matrix interactions to a metastatic setting, lung and lymph node tissue was decellularized and recellularized with CCAO in chapter 9, as these are common locations of metastasis in CCA. Decellularization resulted in removal of cells while preserving ECM structure and protein composition, linked to tissue-specific functioning hallmarks. Recellularization revealed that lung and lymph node ECM induced different gene expression profiles in the organoids, related to cancer stem cell phenotype, cell-ECM integrin binding, and epithelial-to-mesenchymal transition. Furthermore, the metabolic activity of CCAO in lung and lymph node was significantly influenced by the metastatic location, the original characteristics of the patient tumor, and the donor of the target organ. The previously described in vitro tumor models utilized decellularized scaffolds with native structure. Decellularized ECM can also be used for creation of tissue-specific hydrogels through digestion and gelation procedures. These hydrogels were created from both porcine and human livers in chapter 10. The liver ECM-based hydrogels were used to initiate and culture healthy cholangiocyte organoids, which maintained cholangiocyte marker expression, thus providing an alternative for initiation of organoids in BME. Building upon this, in chapter 11 human liver ECM-based extracts were used in combination with a one-step microfluidic encapsulation method to produce size standardized CCAO. The established system can facilitate the reduction of size variability conventionally seen in organoid culture by providing uniform scaffolding. Encapsulated CCAO retained their stem cell phenotype and were amendable to drug screening, showing the feasibility of scalable production of CCAO for throughput drug screening approaches. Lastly, Chapter 12 provides a global discussion and future outlook on tumor tissue engineering strategies for liver cancer, using organoid technology and decellularization. Combining multiple aspects of liver cancer, both cellular and extracellular, with tissue engineering strategies provides advanced tumor models that can delineate fundamental mechanistic insights as well as provide a platform for drug screening approaches.<br/

    Three-Dimensional Hydrogel Bioprinting Technology as a Scaffold of Novel Drug Delivery and Biomedical Devices: A Comprehensive Review

    Get PDF
    Polymer hydrogel used as computer-aided, non-biological arsenal utilize as a drug delivery vehicle overthe past few years.New advances in three-dimensional (3D) bioprinting technology have created new opportunitiesfor the use of hydrogel polymer-based medication delivery systems. 3D printing can deliver the ideal shapes or changecapabilities under specific circumstances which have a better adaptation to physiological function. The accuracy of 3Dprinting technology was significantly higher than that of conventional production techniques.A model bioink acquireproper physicochemical characteristics (mechanical and rheological) and biological properties important for proper functioning.It acts as additive manufacturing with complex spatial structure in biomedical research. In this review, we outlined the currentdevelopments in 3D printed polymer hydrogels as delivery and other platforms

    Intestinal innervation and its role in mucosal damage and inflammation

    Get PDF
    The regulatory role of the autonomic nervous system (ANS) in intestinal inflammation and immunity is widely acknowledged. In this thesis, we investigated mediating pathways and demonstrated a pivotal role for the spleen. We studied the effect of electrical splenic nerve bundle stimulation (SpNS) in a mouse model of experimental colitis induced by dextran sulfate sodium and showed that SpNS reduced colitis. Further, we elucidated effects of sympathetic activity on intestinal mucosal homeostasis. Chemical sympathetic denervation through 6-hydroxydopamine led to enhanced intestinal inflammation, and impaired barrier integrity. In contrast, adrenergic receptor stimulation through UK 14,304, a specific receptor agonist, led to increased proliferation and stem cell function. Adrenergic receptor α2A was found to act as molecular delegate of intestinal epithelial sympathetic activity controlling cell proliferation, differentiation, and host defense. The ANS is a complex network activating numerous pathways and therefore effects can be ambiguous and are often challenging to interpret. Our studies increased the understanding of effects of autonomic neuronal activity on intestinal processes, and future studies should continue investigations with not only experimental, but also clinical research. Ultimately, a role for bioelectronic medicine in intestinal immunity and mucosal healing can be allocated and neuromodulatory techniques are to be examined as a plausible treatment modality

    Identifying alterations in adipose tissue-derived islet GPCR peptide ligand mRNAs in obesity: implications for islet function

    Get PDF
    In addition to acting as an energy reservoir, white adipose tissue is a vital endocrine organ involved in the modulation of cellular function and the maintenance of metabolic homeostasis through the synthesis and secretion of peptides, known as adipokines. It is known that some of these secretory peptides play important regulatory roles in glycaemic control by acting directly on islet β-cells or on insulin-sensitive tissues. Excess adiposity causes alterations in the circulating levels of some adipokines which, depending on their mode of action, can have pro-inflammatory, pro-diabetic or anti-inflammatory, anti-diabetic properties. Some adipokines that are known to act at β-cells have actions that are transduced by binding to G protein- coupled receptors (GPCRs). This large family of receptors represents ~35% of all current drug targets for the treatment of a wide range of diseases, including type 2 diabetes (T2D). Islets express ~300 GPCRs, yet only one islet GPCR is currently directly targeted for T2D treatment. This deficit represents a therapeutic gap that could be filled by the identification of adipose tissue-derived islet GPCR peptide ligands that increase insulin secretion and overall β-cell function. Thus, by defining their mechanisms of action, there is potential for the development of new pharmacotherapies for T2D. Therefore, this thesis describes experiments which aimed to compare the expression profiles of adipose tissue-derived islet GPCR peptide ligand mRNAs under lean and obese conditions, and to characterise the functional effects of a selected candidate of interest on islet cells. Visceral fat depots were retrieved from high-fat diet-induced and genetically obese mouse models, and from human participants. Fat pads were either processed as whole tissue, or mature adipocyte cells were separated from the stromal vascular fraction (SVF) which contains several other cell populations, including preadipocytes and macrophages. The expression levels of 155 islet GPCR peptide ligand mRNAs in whole adipose tissue or in isolated mature adipocytes were quantified using optimised RNA extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) protocols. Comparisons between lean and obese states in mice models and humans revealed significant modifications in the expression levels of several adipokine mRNAs. As expected, mRNAs encoding the positive control genes, Lep and AdipoQ were quantifiable, with the expression of Lep mRNA increasing and that of AdipoQ mRNA decreasing in obesity. Expression of Ccl4 mRNA, encoding chemokine (C-C motif) ligand 4, was significantly upregulated in whole adipose tissue across all models of obesity compared to their lean counterparts. This coincided with elevated circulating Ccl4 peptide levels. This increase was not replicated in isolated mature adipocytes, indicating that the source of upregulated Ccl4 expression in obesity was the SVF of adipose tissue. Based on this significant increase in Ccl4 mRNA expression within visceral fat and its undetermined effects on β-cell function, Ccl4 was selected for further investigation in MIN6 β-cells and mouse islets. PRESTO-Tango β-arrestin reporter assays were performed to determine which GPCRs were activated by exogenous Ccl4. Experiments using HTLA cells expressing a protease-tagged β- arrestin and transfected with GPCR plasmids of interest indicated that 100ng/mL Ccl4 significantly activated Cxcr1 and Cxcr5, but it was not an agonist at the previously identified Ccl4-target GPCRs Ccr1, Ccr2, Ccr5, Ccr9 and Ackr2. RNA extraction and RT-qPCR experiments using MIN6 β-cells and primary islets from lean mice revealed the expression of Cxcr5 mRNA in mouse islets, but it was absent in MIN6 β-cells. The remaining putative Ccl4 receptors (Ccr1, Ccr2, Ccr5, Ccr9, Cxcr1 and Ackr2) were either absent or present at trace levels in mouse islets and MIN6 β-cells. Recombinant mouse Ccl4 protein was used for functional experiments at concentrations of 5, 10, 50 and 100ng/mL, based on previous reports of biological activities at these concentrations. Trypan blue exclusion testing was initially performed to assess the effect of exogenous Ccl4 on MIN6 β-cell viability and these experiments indicated that all concentrations (5-100ng/mL) were well-tolerated. Since β-cells have a low basal rate of apoptosis, cell death was induced by exposure to the saturated free fatty acid, palmitate, or by a cocktail of pro-inflammatory cytokines (interleukin-1β, tumour necrosis factor-α and interferon-γ). In MIN6 β-cells, Ccl4 demonstrated concentration-dependent protective effects against palmitate-induced and cytokine-induced apoptosis. Conversely, while palmitate and cytokines also increased apoptosis of mouse islets, Ccl4 did not protect islets from either inducer. Quantification of bromodeoxyuridine (BrdU) incorporation into β-cell DNA indicated that Ccl4 caused a concentration-dependent reduction in proliferation of MIN6 β-cells in response to 10% fetal bovine serum (FBS). In contrast, immunohistochemical quantification of Ki67-positive mouse islet β-cells showed no differences in β-cell proliferation between control- and Ccl4-treated islets. Whilst the number of β-cells and δ-cells were unaffected, α- cells were significantly depleted by Ccl4 treatment. Exogenous Ccl4 had no effect on nutrient- stimulated insulin secretion from both MIN6 β-cells and primary mouse islets. The 3T3-L1 preadipocyte cell line was used to assess potential Ccl4-mediated paracrine and/or autocrine signalling within adipose tissue. Ccl4 did not alter the mRNA expression of Pparγ, a master regulator of adipocyte differentiation, but did significantly downregulate the mRNA expression of the crucial adipogenic gene, adiponectin. Oil Red O staining and Western blotting were performed to assess lipid accumulation, and insulin and lipolytic signalling, respectively, and these experiments indicated that the observed Ccl4-induced decrease in adiponectin expression failed to correlate with any changes in adipocyte function. In summary, these data demonstrated anti-apoptotic and anti-proliferative actions of the adipokine, Ccl4, on MIN6 β-cells that were not replicated in mouse islets. The absence of any anti-apoptotic, insulin secretory and/or pro-proliferative effects of Ccl4 in islet β-cells suggests that it is unlikely to play a role in regulating β-cell function via crosstalk between adipose tissue and islets. The divergent functional effects highlight that whilst MIN6 cells are a useful primary β-cell surrogate for some studies, primary islets should always be used to confirm physiological relevance. On the other hand, significant α-cell depletion following Ccl4 treatment suggests a cell-specific function within the islets. Furthermore, Ccl4 impaired adiponectin mRNA expression in adipocytes, although, how adipocyte function is affected as a result requires further investigation. Collectively, these data have contributed increased understanding of the role of obesity in modifying the expression of adipose tissue-derived islet GPCR peptide ligands

    Functional Nanomaterials and Polymer Nanocomposites: Current Uses and Potential Applications

    Get PDF
    This book covers a broad range of subjects, from smart nanoparticles and polymer nanocomposite synthesis and the study of their fundamental properties to the fabrication and characterization of devices and emerging technologies with smart nanoparticles and polymer integration

    Biomedical and Pharmacological Applications of Marine Collagen

    Get PDF
    Biomimetic polymers and materials have been widely used in a variety of biomedical and pharmacological applications. Particularly, collagen-based biomaterials have been extensively applied in various biomedical fields, such as scaffolds in tissue engineering. However, there are many challenges associated with the use of mammalian collagen, including the issues of religious constrains, allergic or autoimmune reactions, and the spread of animal diseases. Over the past few decades, marine collagen (MC) has emerged as a promising biomaterial for biomedical and pharmacological applications. Marine organisms are a rich source of structurally novel and biologically active compounds, and to date, many biological components have been isolated from various marine resources. MC offers advantages over mammalian collagen due to its water solubility, low immunogenicity, safety, biocompatibility, antimicrobial activity, functionality, and low production costs. Due to its characteristics and physicobiochemical properties, it has tremendous potential for use as a scaffold biomaterial in tissue engineering and regenerative medicine, in drug delivery systems, and as a therapeutic. In this Special Issue, we encourage submissions related to the recent developments, advancements, trends, challenges, and future perspectives in this new research field. We expect to receive contributions from different areas of multidisciplinary research, including—but not restricted to—extraction, purification, characterization, fabrication, and experimentation of MC, with a particular focus on their biotechnological, biomedical and pharmacological uses

    RECENT ADVANCES IN MOLECULAR MEDICINE AND TRANSLATIONAL RESEARCH

    Get PDF
    ABSTRACT BOO

    Dissecting Extracellular Matrix Internalisation Mechanisms using Functional Genomics

    Get PDF
    Breast and ovarian malignancies account for one third of female cancers. The role of the stroma in supporting invasive growth in breast cancer has become clear. Breast cancer cells interact and respond to the cues from the surrounding extracellular matrix (ECM). Integrins are main cell adhesion receptors and key players in invasive migration by linking the ECM to the actin cytoskeleton. In addition, integrins mediate distinctive biochemical and biomechanical signals to support cancer invasion. The role of matrix proteases in promoting ECM degradation and cancer dissemination has been extensively studied; however, cancer cells possess additional means to support those processes, such as integrin-mediated ECM endocytosis and consequent degradation in the lysosomes. Internalisation of the extracellular matrix is upregulated in invasive breast cancer. Nonetheless, the mechanisms by which cancer cells regulate this process are poorly understood. We developed a high throughput pH sensitive system to detect ECM uptake. Here, we show that MDA-MB-231 breast cancer cells converge in macropinocytosis to internalise diverse ECM components and we confirm that this process is modulated by PAK1. To unravel which ECM components breast cancer cells internalise in a complex environment (namely, cell derived matrices), we performed mass spectrometry. Proteomic analysis identified Annexin A6, Collagen VI, Tenascin C and fibronectin, among other matrisome proteins, to be internalised by invasive breast cancer cells. Following ECM endocytosis, ECM is targeted for lysosomal degradation. To unravel the molecular mechanisms behind this process, we performed a trafficking screen and identified the AP3 complex, VAMP7, Arf1 and ARFGEF2. Our results suggest that the AP3 complex may regulate ECM-integrin delivery to lysosomes. To gain more insight on the signalling pathways governing macropinocytosis in breast cancer cells, we performed a kinase and phosphatase screen that unravelled MAP3K1 and PPP2R1A, a subunit of protein phosphatase 2A (PP2A) as relevant regulators of ECM endocytosis. Furthermore, our data suggests that p38 mitogen-activated protein kinase (MAPK) activation upon binding to the ECM is required for ECM macropinocytosis. Outstandingly, inhibiting p38 MAPK led to profound changes in the ability of breast cancer cells to migrate in cell derived matrices. Previous work from the Rainero lab focused on characterising the receptors involved in ECM internalisation; α2β1 integrin was identified as the main regulator of ECM uptake in MDA-MB-231 cells. In particular, α2β1 integrin has been shown to activate p38 MAPK pathway. Taken together, we hypothesise that binding of ECM to α2β1 integrin results in the activation of PAK1 and MAP3K1, which in turn leads to ECM endocytosis. p38 MAPK activity may induce changes in actin polymerisation via PPP2R1A and/or focal adhesion turnover, which consequently promotes ECM macropinocytosis and invasive migration
    • …
    corecore