5 research outputs found

    Modeling and Simulation of Vehicle to Vehicle and Infrastructure Communication in Realistic Large Scale Urban Area

    Get PDF
    During the last decades, Intelligent Transportation System (ITS) has progressed at a rapid rate, which aim to improve transportation activities in terms of safety and efficiency. Car to Car or Vehicle-to-Vehicle (V2V) communications and Car/Vehicle-to-Infrastructure (I2V or V2I) communications are important components of the ITS architecture. Communication between cars is often referred to Vehicular Ad-Hoc Networks (VANET) and it has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. VANET architectures have been standardized in the IEEE-802.11p specification. For a closer look on V2V and V2I studies, the necessity of simulations is obvious. Network simulators can simulate the ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, this thesis studies the Veins framework which is used to run a traffic (SUMO) and a network (OMNET++) simulator in parallel and simulates the realistic traffics of the city of Cologne, Germany, as an ad-hoc network. Several different simulations and performance analyses have been done to investigate the ability of different VANET applications. In the simulations, cars move in the real map of the city of Cologne and communicate with each other and also with RoadSideUnits with using IEEE 802.11p standard. Then, Probability of Beacons Delivery (PBD) in different area of a real city are calculated and also are compared with the analytical model. This study is the first research performed on calculating PBD of IEEE 802.11p in realistic large urban area. Then, the thesis focuses on modelling and analysis of the applications of the V2I in real city. In these sections, two different simulations of application of the VANET are done by developing the Veins framework and also by developing two new programs written in Python which are connected to SUMO and control the real traffic simulation. One program simulates a real city with intelligent traffic lights for decreasing response time of emergency vehicles by using V2I. The results show that using V2I communication based on 802.11p between emergency cars and traffic lights can decrease the response time of emergency cars up to 70%. Another program, simulates dynamic route planning in real traffic simulation which is used V2I and V2V communication. The result of this simulation show the capability of V2V and V2I to decrease the traveling time, fuel consumptions and emissions of the cars in the city

    Modeling and Simulation of Vehicle to Vehicle and Infrastructure Communication in Realistic Large Scale Urban Area

    Get PDF
    During the last decades, Intelligent Transportation System (ITS) has progressed at a rapid rate, which aim to improve transportation activities in terms of safety and efficiency. Car to Car or Vehicle-to-Vehicle (V2V) communications and Car/Vehicle-to-Infrastructure (I2V or V2I) communications are important components of the ITS architecture. Communication between cars is often referred to Vehicular Ad-Hoc Networks (VANET) and it has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. VANET architectures have been standardized in the IEEE-802.11p specification. For a closer look on V2V and V2I studies, the necessity of simulations is obvious. Network simulators can simulate the ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, this thesis studies the Veins framework which is used to run a traffic (SUMO) and a network (OMNET++) simulator in parallel and simulates the realistic traffics of the city of Cologne, Germany, as an ad-hoc network. Several different simulations and performance analyses have been done to investigate the ability of different VANET applications. In the simulations, cars move in the real map of the city of Cologne and communicate with each other and also with RoadSideUnits with using IEEE 802.11p standard. Then, Probability of Beacons Delivery (PBD) in different area of a real city are calculated and also are compared with the analytical model. This study is the first research performed on calculating PBD of IEEE 802.11p in realistic large urban area. Then, the thesis focuses on modelling and analysis of the applications of the V2I in real city. In these sections, two different simulations of application of the VANET are done by developing the Veins framework and also by developing two new programs written in Python which are connected to SUMO and control the real traffic simulation. One program simulates a real city with intelligent traffic lights for decreasing response time of emergency vehicles by using V2I. The results show that using V2I communication based on 802.11p between emergency cars and traffic lights can decrease the response time of emergency cars up to 70%. Another program, simulates dynamic route planning in real traffic simulation which is used V2I and V2V communication. The result of this simulation show the capability of V2V and V2I to decrease the traveling time, fuel consumptions and emissions of the cars in the city

    Classification and Comparative Study of Routing Techniques in Adhoc Wireless Networks

    Get PDF
    Wireless systems have been in use since 1980s. We have seen their evolutions to first, second and third generation's wireless systems. Wireless systems operate with the aid of a centralized supporting structure such as an access point. These access points assist the wireless users to keep connected with the wireless system, when they roam from one place to the other. The presence of a fixed supporting structure limits the adaptability of wireless systems. In other words, the technology cannot work effectively in places where there is no fixed infrastructure. Future generation wireless systems will require easy and quick deployment of wireless networks. This quick network deployment is not possible with the Infrastructured wireless systems. Recent advancements such as Bluetooth introduced a new type of wireless systems known as ad-hoc networks. Ad-hoc networks or "short live" networks operate in the absence of fixed infrastructure. They offer quick and easy network deployment in situations where it is not possible otherwise. Ad-hoc is a Latin word, which means "for this or for this only." Mobile ad-hoc network is an autonomous system of mobile nodes connected by wireless links; each node operates as an end system and a router for all other nodes in the network. Nodes in ad-hoc network are free to move and organize themselves in an arbitrary fashion. Each user is free to roam about while communication with others. The path between each pair of the users may have multiple links and the radio between them can be heterogeneous. This allows an association of various links to be a part of the same network. A mobile ad-hoc network is a collection of mobile nodes forming an ad-hoc network without the assistance of any centralized structures. These networks introduced a new art of network establishment and can be well suited for an environment where either the infrastructure is lost or where deploy an infrastructure is not very cost effective. The popular IEEE 802.11 "WI-FI" protocol is capable of providing ad-hoc network facilities at low level, when no access point is available. However in this case, the nodes are limited to send and receive information but do not route anything across the network. Ad-hoc networks can operate in a standalone fashion or could possibly be connected to a larger network such as the Internet. An ad-hoc network has certain characteristics, which imposes new demands on the routing protocol. The most important characteristic is the dynamic topology, which is a consequence of node mobility. Nodes can change position quite frequently; the nodes in an ad-hoc network can consist of laptops and personal digital assistants and are often very limited in resources such as CPU power, storage capacity, battery power and bandwidth. This means that the routing protocol should try to minimize control traffic, such as periodic update messages. The Internet Engineering Task Force currently has a working group named Mobile Ad-hoc Networks that is working on routing specifications for ad-hoc networks. This M.Phill thesis evaluates some of the protocols put forth by the working group. This evaluation is done by means of simulation using Network simulator 2 from Berkeley. This work aims at classification of the existing routing protocols of adhoc wireless networks using some definite parameters. After classification of routing protocols of adhoc wireless network, their comparative study was undertaken in order to yield category wise distribution. Furthermore performance evaluation of these protocols was carried out by employing different parameters like fading models, mobility models, traffic patterns etc using the network simulator NS-2 Hence I explore and evaluate different methods for validation of ad hoc routing protocols which are used to set up forwarding paths in spontaneous networks of mobile/Adhoc devices to accomplish the above mentioned comparative study and classification

    Routing and mobility strategies for mobile ad hoc networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore