3 research outputs found

    Stability and bifurcation analysis of Westwood+ TCP congestion control model in mobile cloud computing networks

    Get PDF
    In this paper, we first build up a Westwood+ TCP congestion control model with communication delay in mobile cloud computing networks. We then study the dynamics of this model by analyzing the distribution ranges of eigenvalues of its characteristic equation. Taking communication delay as the bifurcation parameter, we derive the linear stability criteria depending on communication delay. Furthermore, we study the direction of Hopf bifurcation as well as the stability of periodic solution for the Westwood+ TCP congestion control model with communication delay. We find that the Hopf bifurcation occurs when the communication delay passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by the normal form theory and the center manifold theorem. Finally, numerical simulation is done to verify the theoretical results

    Toward a versatile transport protocol

    Get PDF
    Les travaux présentés dans cette thèse ont pour but d'améliorer la couche transport de l'architecture réseau de l'OSI. La couche transport est de nos jour dominée par l'utilisation de TCP et son contrôle de congestion. Récemment de nouveaux mécanismes de contrôle de congestion ont été proposés. Parmi eux TCP Friendly Rate Control (TFRC) semble être le plus abouti. Cependant, tout comme TCP, ce mécanisme ne prend pas en compte ni les évolutions du réseau ni les nouveaux besoins des applications. La première contribution de cette thèse consiste en une spécialisation de TFRC afin d'obtenir un protocole de transport avisé de la Qualité de Service (QdS) spécialement défini pour des réseaux à QdS offrant une garantie de bande passante. Ce protocole combine un mécanisme de contrôle de congestion orienté QdS qui prend en compte la réservation de bande passante au niveau réseau, avec un service de fiabilité totale afin de proposer un service similaire à TCP. Le résultat de cette composition constitue le premier protocole de transport adapté à des réseau à garantie de bande passante. En même temps que cette expansion de service au niveau réseau, de nouvelles technologies ont été proposées et déployées au niveau physique. Ces nouvelles technologies sont caractérisées par leur affranchissement de support filaire et la mobilité des systèmes terminaux. De plus, elles sont généralement déployées sur des entités où la puissance de calcul et la disponibilité mémoire sont inférieures à celles des ordinateurs personnels. La deuxième contribution de cette thèse est la proposition d'une adaptation de TFRC à ces entités via la proposition d'une version allégée du récepteur. Cette version a été implémentée, évaluée quantitativement et ses nombreux avantages et contributions ont été démontrés par rapport à TFRC. Enfin, nous proposons une optimisation des implémentations actuelles de TFRC. Cette optimisation propose tout d'abord un nouvel algorithme pour l'initialisation du récepteur basé sur l'utilisation de l'algorithme de Newton. Nous proposons aussi l'introduction d'un outil nous permettant d'étudier plus en détails la manière dont est calculé le taux de perte du côté récepteur. ABSTRACT : This thesis presents three main contributions that aim to improve the transport layer of the current networking architecture. The transport layer is nowadays overruled by the use of TCP and its congestion control. Recently new congestion control mechanisms have been proposed. Among them, TCP Friendly Rate Control (TFRC) appears to be one of the most complete. Nevertheless this congestion control mechanism, as TCP, does not take into account either the evolution of the network in terms of Quality of Service and mobility or the evolution of the applications. The first contribution of this thesis is a specialisation TFRC congestion control to propose a QoS-aware Transport Protocol specifically designed to operate over QoS-enabled networks with bandwidth guarantee mechanisms. This protocol combines a QoS-aware congestion control, which takes into account networklevel bandwidth reservations, with full reliability in order mechanism to provide a transport service similar to TCP. As a result, we obtain the guaranteed throughput at the application level where TCP fails. This protocol is the first transport protocol compliant with bandwidth guaranteed networks. At the same time the set of network services expands, new technologies have been proposed and deployed at the physical layer. These new technologies are mainly characterised by communications done without wire constraint and the mobility of the end-systems. Furthermore, these technologies are usually deployed on entities where the CPU power and memory storage are limited. The second contribution of this thesis is therefore to propose an adaptation of TFRC to these entities. This is accomplished with the proposition of a new sender-based version of TFRC. This version has been implemented, evaluated and its numerous contributions and advantages compare to usual TFRC version have been demonstrated. Finally, we proposed an optimisation of actual implementations of TFRC. This optimisation first consists in the proposition of an algorithm based on a numerical analysis of the equation used in TFRC and the use of the Newton's algorithm. We furthermore give a first step, with the introduction of a new framework for TFRC, in order to better understand TFRC behaviour and to optimise the computation of the packet loss rate according to loss probability distribution

    Modeling the AIADD paradigm in networks with variable delays

    No full text
    Modeling TCP is fundamental for understanding Internet behavior. The reason is that TCP is responsible for carrying a huge quota of the Internet traffic. During last decade many analytical models have attempted to capture dynamics and steady-state behavior of standard TCP congestion control algorithms. In particular, models proposed in literature have been mainly focused on finding relationships among the throughput achieved by a TCP flow, the segment loss probability, and the round trip time (RTT) of the connection, which the flow goes through. Recently, Westwood+ TCP algorithm has been proposed to improve the performance of classic New Reno TCP, especially over paths characterized by high bandwidth-delay products. In this paper, we develop an analytic model for the throughput achieved by Westwood+ TCP congestion control algorithm when in the presence of paths with time-varying RTT. The proposed model has been validated by using the ns-2 simulator and Internet-like scenarios. Validation results have shown that this model provides relative prediction errors smaller than 10%. It has been shown that a similar accuracy is achieved by analogous models proposed for New Reno TCP. Moreover, it has been proved that it is necessary to consider delay variability in modeling Westwood+ TCP; otherwise, if only the average RTT is considered, performance could be underestimated
    corecore