1,137 research outputs found

    Models, Statistics, and Rates of Binary Correlated Sources

    Full text link
    This paper discusses and analyzes various models of binary correlated sources, which may be relevant in several distributed communication scenarios. These models are statistically characterized in terms of joint Probability Mass Function (PMF) and covariance. Closed-form expressions for the joint entropy of the sources are also presented. The asymptotic entropy rate for very large number of sources is shown to converge to a common limit for all the considered models. This fact generalizes recent results on the information-theoretic performance limit of communication schemes which exploit the correlation among sources at the receiver.Comment: submitted for publicatio

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Distributed Linear Parameter Estimation: Asymptotically Efficient Adaptive Strategies

    Full text link
    The paper considers the problem of distributed adaptive linear parameter estimation in multi-agent inference networks. Local sensing model information is only partially available at the agents and inter-agent communication is assumed to be unpredictable. The paper develops a generic mixed time-scale stochastic procedure consisting of simultaneous distributed learning and estimation, in which the agents adaptively assess their relative observation quality over time and fuse the innovations accordingly. Under rather weak assumptions on the statistical model and the inter-agent communication, it is shown that, by properly tuning the consensus potential with respect to the innovation potential, the asymptotic information rate loss incurred in the learning process may be made negligible. As such, it is shown that the agent estimates are asymptotically efficient, in that their asymptotic covariance coincides with that of a centralized estimator (the inverse of the centralized Fisher information rate for Gaussian systems) with perfect global model information and having access to all observations at all times. The proof techniques are mainly based on convergence arguments for non-Markovian mixed time scale stochastic approximation procedures. Several approximation results developed in the process are of independent interest.Comment: Submitted to SIAM Journal on Control and Optimization journal. Initial Submission: Sept. 2011. Revised: Aug. 201

    Distributed information extraction from large-scale wireless sensor networks

    Get PDF
    corecore