410 research outputs found

    Effects on environmental impacts of introducing electric vehicle batteries as storage - A case study of the United Kingdom

    Get PDF
    This paper examines the potential environmental impact of using electric vehicle batteries as storage in relation to an energy system as it moves towards the goal of net-zero emissions in 2050. The electrified transportation sector is an inevitable step towards a more sustainable energy system to meet climate change mitigation. Large-scale deployment of electric vehicles increases electricity demand whilst simultaneously presenting an opportunity to use electric vehicle batteries to shift peak demand through vehicle to grid, battery swapping, and reuse of retired vehicle batteries. The environmental consequence of using electric vehicle batteries as energy storage is analysed in the context of energy scenarios in 2050 in the United Kingdom. The results show that using an electric vehicle battery for energy storage through battery swapping can help decrease investigated environmental impacts; a further reduction can be achieved by using retired electric vehicle batteries. Using an electric vehicle battery for energy storage through a vehicle to grid mechanism has the potential to reduce environmental impacts if the impact of cycle degradation is minimal compared with calendar degradation. This balance is dependent upon the lithium-ion chemistry, temperature and mileage driven

    A General Approach to Electrical Vehicle Battery Remanufacturing System Design

    Full text link
    One of the major difficulties electrical vehicle (EV) industry facing today is the production and lifetime cost of battery packs. Studies show that using remanufactured batteries can dramatically lower the cost. The major difference between remanufacturing and traditional manufacturing is the supply and demand variabilities and uncertainties differences. The returned core for remanufacturing operations (supply side) can vary considerably in terms of the time of returns and the quality of returned products. On the other hand, because different contracts can be used to regulate suppliers, it is almost always assumed zero uncertainty and variability for traditional manufacturing systems. Similarly, customers demand traditional manufacturers to sell newly produced products in constant high quality. But, remanufacturers usually sell in aftermarket, and the quality of the products demanded can vary depends on the price range, usage, customer segment and many other factors. The key is to match supply and demand side variabilities so the overlapping between them can be maximized. Because of these differences, a new framework is needed for remanufacturing system design. This research aims at developing a new approach to use remanufactured battery packs to fulfill EV warranties and customer aftermarket demands and to match supply and demand side variabilities. First, a market lifetime EV battery return (supply side) forecasting method is develop, and it is validated using Monte Carlo simulation. Second, a discrete event simulation method is developed to estimate EV battery lifetime cost for both customer and manufacturer/remanufacturer. Third, a new remanufacturing business model and a simulation framework are developed so both the quality and quantity aspects of supply and demand can be altered and the lifetime cost for both customer and manufacturer/remanufacturer can be minimized. The business models and methodologies developed in this dissertation provide managerial insights to benefit both the manufacturer/remanufacturer and customers in EV industry. Many findings and methodologies can also be readily used in other remanufacturing settings. The effectiveness of the proposed models is illustrated and validated by case studies.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143955/1/xrliang_1.pd

    Modelling Li-ion battery aging for second life business models

    Get PDF
    Electric vehicles are, slowly but steadily, entering into the automotive market. The slow entry is caused, basically, by the high cost of their batteries. Additionally, electric vehicle batteries are considered not useful for traction purposes when they have lost between 20 or 30% of its capacity. At this point, batteries should be recycled by the phew companies capable to do so in Europe, knowing that management of batteries as industrial waste until the recycling factory costs money. In the search of economical incentives and trying to eliminate the recycling costs, the idea of electric vehicle battery reuse for stationary applications appeared, which will take advantage from the benefits of reused batteries selling or by the profit obtained from the 2nd life use. This thesis analyzes the different electric vehicle batteries actually in the market, studying the aspects that should be modified and that have to be taken into account when repurposing them. Moreover, it analyzes the remanufacturing costs taking into account the actual battery checking methods. In order to improve these processes, a novel battery state of health estimation methodology is developed using on-board data. This new methodology observes the voltage recovery evolution when the car stops and relates it to battery aging. This thesis studies the rest of useful life in the different possible applications for second life developing an aging model using Matlab and Simuling tools. This model includes the principal aging factors of a battery and, based on current load requirements and temperature profiles of different stationary applications, it determines their expected lifetime. The presented values can be used, afterwards, for economic evaluation, business model calculations, amortization periods and maintenance schedules. Finally, this thesis finishes with an environmental analysis based on the global warming effect produced by the electric vehicle and the battery reuse during its second life, evaluating their environmental presupposed advantages against internal combustion engine vehicles and the battery reuse in each possible business case. This thesis concludes that electric vehicle battery reuse is surely going to take place sooner or later. The electricity grid is waiting for affordable energy storage systems and battery reuse is foreseen as a good option.Els vehicles elèctrics estan, poc a poc però de manera sostinguda, entrant dins el parc automotriu. La seva entrada és més lenta de l'esperat bàsicament per l'alt cost de les bateries. A més, les bateries de vehicle elèctric es consideren no aptes per a usos de tracció de vehicles quan aquestes han perdut entre un 20 i un 30% de la seva capacitat. Arribades a aquest punt, les bateries han de ser reciclades a les poques empreses que en són capaces i la seva gestió costa diners. Per tal d'intentar trobar incentius econòmics i d'eliminar el cost del reciclatge, ha aparegut la idea d'aprofitar les bateries per a aplicacions estacionaries i, dels beneficis de la venta i els serveis oferts, treure'n certa rendibilitat. Aquesta tesi analitza les bateries de vehicle elèctric que actualment estan al mercat, n'estudia els aspectes que cal modificar i tenir presents a l'hora de preparar-les per a la segona vida. Així mateix, fa un estudi de costs del procés de re-manufactura tenint en compte els mètodes actuals de validació de les bateries. Per tal de millorar-ne els processos, s'ha desenvolupat un sistema d'estimació de l'estat de salut de les bateries mitjançant dades embarcades en el propi vehicle basat en l'evolució del voltatge de recuperació un cop el vehicle s'atura. Així mateix, per tal de determinar la duració de les bateries en les possibles aplicacions en segona vida, s'ha desenvolupat un model d'envelliment en Matlab i les eines del Simulink. Aquest model inclou els factors d'envelliment principal de les bateries i, basant-se en els requeriments de corrent i les condicions de temperatura de diverses aplicacions estacionàries de bateries en segona vida, en determina l'esperança de vida útil. Aquests valors poden ser posteriorment utilitzats per a valoracions econòmiques d'amortitzacions de material i dels períodes de manteniment. Finalment, la tesi acaba amb un anàlisi mediambiental de l'efecte hivernacle que produeix el vehicle elèctric i la reutilització de les bateries en una segona vida, valorant la seva idoneïtat mediambiental, o no, en cada possible ús. Acaba concloent que, la reutilització de bateries de vehicle elèctric és un fet que acabarà per ocórrer amb seguretat, doncs el sistema elèctric està esperant sistemes d'emmagatzematge de baix cost i la reutilització de bateries n'és una bona opció

    Modelling Li-ion battery aging for second life business models

    Get PDF
    Versió amb una secció retallada, per raons de confidencialitatPremi extraordinari doctorat UPC curs 2015-2016, àmbit d’Enginyeria IndustrialElectric vehicles are, slowly but steadily, entering into the automotive market. The slow entry is caused, basically, by the high cost of their batteries. Additionally, electric vehicle batteries are considered not useful for traction purposes when they have lost between 20 or 30% of its capacity. At this point, batteries should be recycled by the phew companies capable to do so in Europe, knowing that management of batteries as industrial waste until the recycling factory costs money. In the search of economical incentives and trying to eliminate the recycling costs, the idea of electric vehicle battery reuse for stationary applications appeared, which will take advantage from the benefits of reused batteries selling or by the profit obtained from the 2nd life use. This thesis analyzes the different electric vehicle batteries actually in the market, studying the aspects that should be modified and that have to be taken into account when repurposing them. Moreover, it analyzes the remanufacturing costs taking into account the actual battery checking methods. In order to improve these processes, a novel battery state of health estimation methodology is developed using on-board data. This new methodology observes the voltage recovery evolution when the car stops and relates it to battery aging. This thesis studies the rest of useful life in the different possible applications for second life developing an aging model using Matlab and Simuling tools. This model includes the principal aging factors of a battery and, based on current load requirements and temperature profiles of different stationary applications, it determines their expected lifetime. The presented values can be used, afterwards, for economic evaluation, business model calculations, amortization periods and maintenance schedules. Finally, this thesis finishes with an environmental analysis based on the global warming effect produced by the electric vehicle and the battery reuse during its second life, evaluating their environmental presupposed advantages against internal combustion engine vehicles and the battery reuse in each possible business case. This thesis concludes that electric vehicle battery reuse is surely going to take place sooner or later. The electricity grid is waiting for affordable energy storage systems and battery reuse is foreseen as a good option.Els vehicles elèctrics estan, poc a poc però de manera sostinguda, entrant dins el parc automotriu. La seva entrada és més lenta de l'esperat bàsicament per l'alt cost de les bateries. A més, les bateries de vehicle elèctric es consideren no aptes per a usos de tracció de vehicles quan aquestes han perdut entre un 20 i un 30% de la seva capacitat. Arribades a aquest punt, les bateries han de ser reciclades a les poques empreses que en són capaces i la seva gestió costa diners. Per tal d'intentar trobar incentius econòmics i d'eliminar el cost del reciclatge, ha aparegut la idea d'aprofitar les bateries per a aplicacions estacionaries i, dels beneficis de la venta i els serveis oferts, treure'n certa rendibilitat. Aquesta tesi analitza les bateries de vehicle elèctric que actualment estan al mercat, n'estudia els aspectes que cal modificar i tenir presents a l'hora de preparar-les per a la segona vida. Així mateix, fa un estudi de costs del procés de re-manufactura tenint en compte els mètodes actuals de validació de les bateries. Per tal de millorar-ne els processos, s'ha desenvolupat un sistema d'estimació de l'estat de salut de les bateries mitjançant dades embarcades en el propi vehicle basat en l'evolució del voltatge de recuperació un cop el vehicle s'atura. Així mateix, per tal de determinar la duració de les bateries en les possibles aplicacions en segona vida, s'ha desenvolupat un model d'envelliment en Matlab i les eines del Simulink. Aquest model inclou els factors d'envelliment principal de les bateries i, basant-se en els requeriments de corrent i les condicions de temperatura de diverses aplicacions estacionàries de bateries en segona vida, en determina l'esperança de vida útil. Aquests valors poden ser posteriorment utilitzats per a valoracions econòmiques d'amortitzacions de material i dels períodes de manteniment. Finalment, la tesi acaba amb un anàlisi mediambiental de l'efecte hivernacle que produeix el vehicle elèctric i la reutilització de les bateries en una segona vida, valorant la seva idoneïtat mediambiental, o no, en cada possible ús. Acaba concloent que, la reutilització de bateries de vehicle elèctric és un fet que acabarà per ocórrer amb seguretat, doncs el sistema elèctric està esperant sistemes d'emmagatzematge de baix cost i la reutilització de bateries n'és una bona opció.Award-winningPostprint (published version

    Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration

    Get PDF
    Low carbon and renewable energy sources (RESs) are fast becoming a key sustainable instrument in meeting the global growth of electricity demand while curbing carbon emissions. For example, the gradual displacement of fossil-fuelled vehicles with electrically driven counterparts will inevitably increase both the power grid baseload and peak demand. In many developed countries, the electrification process of the transport sector has already started in tandem with the installation of multi-GW renewable energy capacity, particularly wind and solar, huge investment in power storage technology, and end-user energy demand management. The expansion of the Electric Vehicle (EV) market presents a new opportunity to create a cleaner and transformative new energy carrier. For instance, a managed EV battery charging and discharging profile in conjunction with the national grid, known as the Vehicle-to-Grid system (V2G), is projected to be an important mechanism in reducing the impact of renewable energy intermittency. This paper presents an extensive literature review of the current status of EVs and allied interface technology with the power grid. The main findings and statistical details are drawn from up-to-date publications highlighting the latest technological advancements, limitations, and potential future market development. The authors believe that electric vehicle technology will bring huge technological innovation to the energy market where the vehicle will serve both as a means of transport and a dynamic energy vector interfacing with the grid (V2G), buildings (V2B), and others (V2X)

    Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T)

    Get PDF
    The rely on internal combustion engines is gradually decreased with the recent evolution of electric vehicles (EVs) in the automotive industry. Electric motors are replacing the energy systems mainly to improve the powertrain's efficiency and ensure they are environmentally friendly. These novel powertrains are designed to operate solely on batteries or supercapacitors. For these types of EVs, the battery is charged using an alternating current supply in connection to the grid in the case of plug-in electric vehicles. Internal combustion engines are equally used for some hybrid vehicles. Charging of the battery can also be carried out via regenerative braking from the traction motor. This study presents a brief background about the different available EVs, detailed information on various power converter electronics used in battery electric vehicles, and a summary of the strengths (S), weaknesses (W), opportunities (O), and threats (T) of the EV is presented. Moreover, SWOT analysis of the battery electric vehicles (BEV) and their prospects in the automotive industry are introduced

    Smart operation of transformers for sustainable electric vehicles integration and model predictive control for energy monitoring and management

    Get PDF
    The energy transmission and distribution systems existing today are stillsignificantly dependent on transformers,despite beingmore efficient and sustainable than those of decadesago. However, a large numberof power transformers alongwith other infrastructures have been in service for decades and are considered to be in their final ageing stage. Anymalfunction in the transformerscouldaffect the reliability of the entire electric network and alsohave greateconomic impact on the system.Concernsregardingurban air pollution, climate change, and the dependence on unstable and expensive supplies of fossil fuels have lead policy makers and researchers to explore alternatives to conventional fossil-fuelled internal combustion engine vehicles. One such alternative is the introduction of electric vehicles. A broad implementation of such mean of transportation could signify a drastic reduction in greenhouse gases emissions and could consequently form a compelling argument for the global efforts of meeting the emission reduction targets. In this thesis the topic of a high penetration of electric vehicles and their possible integration in insular networksis discussed. Subsequently, smart grid solutions with enabling technologies such as energy management systems and smart meters promote the vision of smart households, which also allows for active demand side in the residential sector.However, shifting loads simultaneously to lower price periods is likely to put extra stress on distribution system assets such as distribution transformers. Especially, additional new types of loads/appliances such as electric vehicles can introduce even more uncertaintyon the operation of these assets, which is an issue that needs special attention. Additionally, in order to improve the energy consumption efficiencyin a household, home energy management systems are alsoaddressed. A considerable number ofmethodologies developed are tested in severalcasestudies in order to answer the risen questions.Os sistemas de transmissão e distribuição de energia existentes hoje em dia sãosignificativamente dependentes dos transformadores, pese embora sejammais eficientes e sustentáveis do que os das décadas passadas. No entanto, uma grande parte dos transformadores ao nível dadistribuição, juntamente com outras infraestruturassubjacentes, estão em serviço há décadas e encontram-se nafasefinal do ciclo devida. Qualquer defeito no funcionamento dos transformadorespode afetara fiabilidadede toda a redeelétrica, para além de terum grande impactoeconómico no sistema.Os efeitos nefastos associadosàpoluição do arem centro urbanos, asmudançasclimáticasea dependência de fontes de energiafósseis têm levado os decisores políticos e os investigadores aexplorar alternativas para os veículos convencionais de combustão interna. Uma alternativa é a introdução de veículos elétricos. Umaampla implementação de tal meio de transporte poderia significar uma redução drástica dos gases de efeito de estufa e poderiareforçar os esforços globais para ocumprimento das metas de redução de emissõesde poluentes na atmosfera.Nesta tese é abordado o tema da elevada penetração dos veículos elétricose a sua eventual integração numarede elétricainsular. Posteriormente, são abordadas soluções de redeselétricasinteligentes com tecnologias específicas, tais como sistemas de gestão de energia e contadores inteligentes que promovamo paradigmadas casas inteligentes, que também permitem a gestão da procura ativano sector residencial.No entanto, deslastrando significativamente as cargaspara beneficiar de preçosmais reduzidosé suscetíveldecolocarconstrangimentosadicionaissobre os sistemas de distribuição, especialmentesobre ostransformadores.Osnovos tipos de cargas tais como os veículos elétricospodem introduzir ainda mais incertezassobre a operação desses ativos, sendo uma questão que suscitaespecial importância. Além disso, com ointuitode melhorar a eficiência do consumo de energia numa habitação, a gestão inteligente daenergia é um assunto que também éabordadonesta tese. Uma pletora de metodologias é desenvolvida e testadaemvários casos de estudos, a fim de responder às questões anteriormente levantadas

    Battery technology research : Feasibility analysis of electric vehicle battery repurposing for battery energy storage

    Get PDF
    This project reviews the battery technology landscape for energy storage and investigates the feasibility of accelerating the BESS adoption primarily in New Zealand by repurposing electric vehicle batteries. The possibilities and potential issues for recycling battery materials at the ultimate end life are also considered

    Battery Second Use: A Framework for Evaluating the Combination of Two Value Chains

    Get PDF
    A Battery Second Use (B2U) strategy is the design and development of a battery system with the intention of having it serve two purposes: (1) the initial use in the vehicle and (2) another mobile or stationary application. An optimal battery second use strategy requires the design and use of the battery to maximize the value of the system over its entire extended life cycle. Within this thesis a framework is developed which allows the evaluation of tradeoffs along the operational second use value chain
    corecore