42,210 research outputs found

    On Horizontal and Vertical Separation in Hierarchical Text Classification

    Get PDF
    Hierarchy is a common and effective way of organizing data and representing their relationships at different levels of abstraction. However, hierarchical data dependencies cause difficulties in the estimation of "separable" models that can distinguish between the entities in the hierarchy. Extracting separable models of hierarchical entities requires us to take their relative position into account and to consider the different types of dependencies in the hierarchy. In this paper, we present an investigation of the effect of separability in text-based entity classification and argue that in hierarchical classification, a separation property should be established between entities not only in the same layer, but also in different layers. Our main findings are the followings. First, we analyse the importance of separability on the data representation in the task of classification and based on that, we introduce a "Strong Separation Principle" for optimizing expected effectiveness of classifiers decision based on separation property. Second, we present Hierarchical Significant Words Language Models (HSWLM) which capture all, and only, the essential features of hierarchical entities according to their relative position in the hierarchy resulting in horizontally and vertically separable models. Third, we validate our claims on real-world data and demonstrate that how HSWLM improves the accuracy of classification and how it provides transferable models over time. Although discussions in this paper focus on the classification problem, the models are applicable to any information access tasks on data that has, or can be mapped to, a hierarchical structure.Comment: Full paper (10 pages) accepted for publication in proceedings of ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR'16

    Semantic Image Retrieval via Active Grounding of Visual Situations

    Full text link
    We describe a novel architecture for semantic image retrieval---in particular, retrieval of instances of visual situations. Visual situations are concepts such as "a boxing match," "walking the dog," "a crowd waiting for a bus," or "a game of ping-pong," whose instantiations in images are linked more by their common spatial and semantic structure than by low-level visual similarity. Given a query situation description, our architecture---called Situate---learns models capturing the visual features of expected objects as well the expected spatial configuration of relationships among objects. Given a new image, Situate uses these models in an attempt to ground (i.e., to create a bounding box locating) each expected component of the situation in the image via an active search procedure. Situate uses the resulting grounding to compute a score indicating the degree to which the new image is judged to contain an instance of the situation. Such scores can be used to rank images in a collection as part of a retrieval system. In the preliminary study described here, we demonstrate the promise of this system by comparing Situate's performance with that of two baseline methods, as well as with a related semantic image-retrieval system based on "scene graphs.

    Looking at Vector Space and Language Models for IR using Density Matrices

    Full text link
    In this work, we conduct a joint analysis of both Vector Space and Language Models for IR using the mathematical framework of Quantum Theory. We shed light on how both models allocate the space of density matrices. A density matrix is shown to be a general representational tool capable of leveraging capabilities of both VSM and LM representations thus paving the way for a new generation of retrieval models. We analyze the possible implications suggested by our findings.Comment: In Proceedings of Quantum Interaction 201

    The uncertain representation ranking framework for concept-based video retrieval

    Get PDF
    Concept based video retrieval often relies on imperfect and uncertain concept detectors. We propose a general ranking framework to define effective and robust ranking functions, through explicitly addressing detector uncertainty. It can cope with multiple concept-based representations per video segment and it allows the re-use of effective text retrieval functions which are defined on similar representations. The final ranking status value is a weighted combination of two components: the expected score of the possible scores, which represents the risk-neutral choice, and the scores’ standard deviation, which represents the risk or opportunity that the score for the actual representation is higher. The framework consistently improves the search performance in the shot retrieval task and the segment retrieval task over several baselines in five TRECVid collections and two collections which use simulated detectors of varying performance

    Modeling Temporal Evidence from External Collections

    Full text link
    Newsworthy events are broadcast through multiple mediums and prompt the crowds to produce comments on social media. In this paper, we propose to leverage on this behavioral dynamics to estimate the most relevant time periods for an event (i.e., query). Recent advances have shown how to improve the estimation of the temporal relevance of such topics. In this approach, we build on two major novelties. First, we mine temporal evidences from hundreds of external sources into topic-based external collections to improve the robustness of the detection of relevant time periods. Second, we propose a formal retrieval model that generalizes the use of the temporal dimension across different aspects of the retrieval process. In particular, we show that temporal evidence of external collections can be used to (i) infer a topic's temporal relevance, (ii) select the query expansion terms, and (iii) re-rank the final results for improved precision. Experiments with TREC Microblog collections show that the proposed time-aware retrieval model makes an effective and extensive use of the temporal dimension to improve search results over the most recent temporal models. Interestingly, we observe a strong correlation between precision and the temporal distribution of retrieved and relevant documents.Comment: To appear in WSDM 201

    Learning a Deep Listwise Context Model for Ranking Refinement

    Full text link
    Learning to rank has been intensively studied and widely applied in information retrieval. Typically, a global ranking function is learned from a set of labeled data, which can achieve good performance on average but may be suboptimal for individual queries by ignoring the fact that relevant documents for different queries may have different distributions in the feature space. Inspired by the idea of pseudo relevance feedback where top ranked documents, which we refer as the \textit{local ranking context}, can provide important information about the query's characteristics, we propose to use the inherent feature distributions of the top results to learn a Deep Listwise Context Model that helps us fine tune the initial ranked list. Specifically, we employ a recurrent neural network to sequentially encode the top results using their feature vectors, learn a local context model and use it to re-rank the top results. There are three merits with our model: (1) Our model can capture the local ranking context based on the complex interactions between top results using a deep neural network; (2) Our model can be built upon existing learning-to-rank methods by directly using their extracted feature vectors; (3) Our model is trained with an attention-based loss function, which is more effective and efficient than many existing listwise methods. Experimental results show that the proposed model can significantly improve the state-of-the-art learning to rank methods on benchmark retrieval corpora
    corecore