449 research outputs found

    Characterizing Olive Grove Canopies by Means of Ground-Based Hemispherical Photography and Spaceborne RADAR Data

    Get PDF
    One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ0). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r2 = 0.88). In turn, when effective LAI (LAIeff) has been taken into account, the parameters of the scattering canopy model are better estimated (r2 = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    Review Article: Global Monitoring of Snow Water Equivalent Using High-Frequency Radar Remote Sensing

    Get PDF
    Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 × 106 km2 of Earth\u27s surface (31 % of the land area) each year, and is thus an important expression and driver of the Earth\u27s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∼ −13 % per decade) as Arctic summer sea ice. More than one-sixth of the world\u27s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth\u27s cold regions\u27 ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high-socio-economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band synthetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Development of a Downscaling Scheme for a Coarse Scale Soil Water Estimation Method

    Get PDF
    Many river basins worldwide, especially in semi-arid regions, are adversely impacted by poor hydrological infrastructure or are poorly characterized due to limited or no hydrologic data. This condition challenges water-management authorities, who benefit from reliable prediction of the hydrological dynamics that can be made by means of hydrological models. Because of the lack of sufficient or reliable data, often such models are difficult to calibrate and to validate. This study addresses this data limitation by formulating and testing an independent validation tool for hydrological models that can be applied to downscale macro-scale soil water data derived from a remotely sensed scatterometer dataset. This proposed method uses the concept of hydrological response units (HRU) to analyze the spatial variability within one scatterometer footprint. The HRUs are treated as model entities in the process oriented hydrological model J2000 that was applied to the Great Letaba River catchment (ca. 4.700 km²) in South Africa. The soil water time series results were then compared to the remotely sensed data set and the downscaling scheme derived. First, the analysis conducted on footprint scale highlights the similarities in predicting the soil water generation over the long term and in seasonal terms. It also exhibits that the absolute values of both time series can not be used for further investigation, due to differences in the observed soil water volume. Second, the resulted simulated soil water time series were used to establish the downscaling method. Here, the study provides promising results that allow the downscaling of the coarse scale soil water calculated dataset, based upon the landscape related parameters of land cover, soil group and precipitation. The study findings indicate that, by linking the two concepts, hydrological modeling and remote sensing, water management authorities should be able to reduce certain prediction uncertainties of the applied models

    The use of remotely sensed data for forest biomass monitoring : a case of forest sites in north-eastern Armenia

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesIn recent years there has been an increasing interest in the use of synthetic aperture radar (SAR) data and geospatial technologies for environmental monitoring․ Particularly, forest biomass evaluation was of high importance, as forests have a crucial role in global carbon emission. Within this study we evaluate the use of Sentinel 1 C-band multitemporal SAR data with combination of Alos Palsar L-band SAR and Sentinel 2 multispectral remote sensing (RS) data for mapping forest aboveground biomass (AGB) of dry subtropical forests in mountainous areas. Field observation from National Forest Inventory was used as a ground truth data. As the SAR data suffers greatly by the complex topography, a simple approach of aspect and slope information as forestry ancillary data was implemented directly in the regression model for the first time to mitigate the topography effect on radar backscattering value․ Dense time-series analysis allowed us to overcome the SAR saturation by the forest phenology and select the optimal C-band scene. Image texture measures of SAR data has been strongly related to the biomass distribution and has robustly contributed to the prediction․ Multilinear Stepwise Regression allowed to select and evaluate the most relevant variables for AGB. The prediction model combining RS with ancillary data explained the 62 % of variance with root-mean-square error of 56.6 t ha¯¹. The study also reveals that C-band SAR data on forest biomass prediction is limited due to their short wavelength. Further, the mountainous condition is a major constraint for AGB estimation. Additionally, this research demonstrates a positive outcome in forest AGB prediction with freely accessible RS data

    Physics-based Modeling for High-fidelity Radar Retrievals.

    Full text link
    Knowledge of soil moisture on a global scale is crucial for understanding the Earth's water, energy, and carbon cycles. This dissertation is motivated by the need for accurate soil moisture estimates and focuses on the improvement of soil moisture retrieval based on active remote sensing over vegetated areas. It addresses important, but often neglected, aspects in radar imaging: effects related to the ionosphere, multispecies vegetation (heterogeneity at pixel level), and heterogeneity at landscape level. The first contribution is the development of a generalized radar scattering model as an advancement of current radar modeling techniques for vegetated areas at fine-scale pixel level. It consists of realistic representations of multispecies and subsurface soil layer modeling, and includes terrain topography. This modeling improvement allows greater applicability to different land cover types and higher soil moisture retrieval accuracy. Most coarse-scale satellite pixels (km-scale or coarser) contain highly heterogeneous scenes with fine-scale (100 m or finer) variability of soil moisture, soil texture, topography, and vegetation cover. The second contribution is the development of spatial scaling techniques to investigate effects of landscape-level heterogeneity on radar scattering signatures. Using the above radar forward scattering model, which assumes homogeneity over fine scales, tailor-made models are derived for the contribution of fine-scale heterogeneity to the coarse-scale satellite pixel for effective soil moisture retrieval. Finally, the third contribution is the development of a self-contained calibration technique based on an end-to-end radar system model. The model includes ionospheric effects allowing the use of spaceborne radar signals for accurate soil moisture retrieval from lower frequencies, such as L- and P-band. These combined contributions will greatly increase the usability of low-frequency spaceborne radar data for soil moisture retrieval: ionospheric effects are mitigated, landscape level heterogeneity is resolved, and fine-scale scenes are better modeled. These contributions ultimately allow improved fidelity in soil moisture retrieval and are immediately applicable in current missions such as the ongoing AirMOSS mission that observes root-zone soil moisture with a P-band radar at fine-scale resolution (100 m), and NASA's upcoming SMAP spaceborne mission, which will assess surface soil moisture with an L-band radar and radiometer at km-scale resolution (3 km).PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107290/1/mburgin_1.pd

    Vegetation, topography and snow melt at the Forest-Tundra Ecotone in arctic Europe: a study using synthetic aperture radar

    Get PDF
    This research was conducted as part of DART (Dynamic Response of the Forest-Tundra Ecotone to Environmental Change), a four year (1998-2002) European Commission funded international programme of research addressing the potential dynamic response of the (mountain birch) forest-tundra ecotone to environmental change. Satellite remote sensing was used to map landscape scale (lO(^1)-lO(^3) m) patterns of vegetation and spatial dynamics of snow melt at the forest-tundra ecotone at three sites along ca. an 8º latitudinal gradient in the Fermoscandian mountain range. Vegetation at the forest-tundra ecotone was mapped using visible -near infrared (VIR) satellite imagery, with class definition dependent on the timing of the acquisition of imagery (related to highly dynamic vegetation phenology) and spatial variation in the FTE. Multi-temporal spacebome ERS-2 synthetic aperture radar (SAR) was used for mapping snow melt. Comprehensive field measurements of snow properties and meteorological data combined with a physically based snow backscatter model indicated potential for mapping wet snow cover at each site. Significant temporal backscatter signatures enabled a classification algorithm to be developed to map the pattern of snow melt across the forest- tundra ecotone. However, diurnal and seasonal melt-freeze effects relative to the timing of ERS-2 SAR image acquisition effectively reduce the temporal resolution of data. Further, the study sites with large topographic variation and complex vegetative cover, provided a challenging operating environment and problems were identified with the robustness of classification during the later stages of snow melt because of the effects of vegetation. Significant associations were identified between vegetation, topography, and snow melt despite limitations in the snow mapping

    C-band Scatterometers and Their Applications

    Get PDF
    corecore