7,283 research outputs found

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Intube two-phase flow probabilities based on capacitance signal clustering

    Get PDF
    To study the objectivity in flow pattern mapping of horizontal two-phase flow in macroscale tubes, a capacitance sensor is developed for use with refrigerants. Sensor signals are gathered with R410A in an 8mm I.D. smooth tube at a saturation temperature of 15°C in the mass velocity range of 200 to 500kg/m²s and vapour quality range from 0 to 1 in steps of 0.025. A visual classification based on high speed camera images is made for comparison reasons. A statistical analysis of the sensor signals shows that the average and the variance are suitable for flow regime classification into slug flow, intermittent flow and annular flow by using a the fuzzy c-means clustering algorithm. This soft clustering algorithm perfectly predicts the slug/intermittent flow transition compared to our visual observations. The intermittent/annular flow transition is found at higher vapour qualities, but with the same trend compared to our observations and the prediction of [Barbieri et al., 2008, Flow patterns in convective boiling of refrigerant R-134a in smooth tubes of several diameters, 5th European Thermal-Sciences Conference, The Netherlands]. The intermittent/annular flow transition is very gradual. A probability approach can therefore better describe such a transition. The membership grades of the cluster algorithm can be interpreted as flow probabilities. These probabilities are further compared to time fraction functions of [Jassim et al., 2008, Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps

    Intelligent Based Terrain Preview Controller for a 3-axle Vehicle

    Get PDF
    Presented at 13th International Symposium on Advanced Vehicle Control, AVEC'16; Munich 13-16/09/2016The paper presents a six-wheel half longitudinal model and the design of a dual level control architecture. The first (top) level is designed using a Sugeno fuzzy inference feedforward architecture with and without preview. The second level of controllers are locally managing each wheel for each axle. As the vehicle is moving forward the front wheels and suspension units will have less time to respond when compared to the middle and rear units, hence a preview sensor is used to compensate. The paper shows that the local active suspensions together with the Sugeno Fuzzy, (locally optimised using subtractive clustering), Feedforward control strategy is more effective and this architecture has resulted in reducing the sprung mass vertical acceleration and pitch accelerations

    Fuzzy C-Mean And Genetic Algorithms Based Scheduling For Independent Jobs In Computational Grid

    Get PDF
    The concept of Grid computing is becoming the most important research area in the high performance computing. Under this concept, the jobs scheduling in Grid computing has more complicated problems to discover a diversity of available resources, select the appropriate applications and map to suitable resources. However, the major problem is the optimal job scheduling, which Grid nodes need to allocate the appropriate resources for each job. In this paper, we combine Fuzzy C-Mean and Genetic Algorithms which are popular algorithms, the Grid can be used for scheduling. Our model presents the method of the jobs classifications based mainly on Fuzzy C-Mean algorithm and mapping the jobs to the appropriate resources based mainly on Genetic algorithm. In the experiments, we used the workload historical information and put it into our simulator. We get the better result when compared to the traditional algorithms for scheduling policies. Finally, the paper also discusses approach of the jobs classifications and the optimization engine in Grid scheduling

    Identification of Evolving Rule-based Models.

    Get PDF
    An approach to identification of evolving fuzzy rule-based (eR) models is proposed. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rules based on ranking using the informative potential of the data. In this way, the rule-base structure is inherited and updated when new informative data become available, rather than being completely retrained. The adaptive nature of these evolving rule-based models, in combination with the highly transparent and compact form of fuzzy rules, makes them a promising candidate for modeling and control of complex processes, competitive to neural networks. The approach has been tested on a benchmark problem and on an air-conditioning component modeling application using data from an installation serving a real building. The results illustrate the viability and efficiency of the approach. (c) IEEE Transactions on Fuzzy System
    corecore