1,077 research outputs found

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Understanding the thermal implications of multicore architectures

    Get PDF
    Multicore architectures are becoming the main design paradigm for current and future processors. The main reason is that multicore designs provide an effective way of overcoming instruction-level parallelism (ILP) limitations by exploiting thread-level parallelism (TLP). In addition, it is a power and complexity-effective way of taking advantage of the huge number of transistors that can be integrated on a chip. On the other hand, today's higher than ever power densities have made temperature one of the main limitations of microprocessor evolution. Thermal management in multicore architectures is a fairly new area. Some works have addressed dynamic thermal management in bi/quad-core architectures. This work provides insight and explores different alternatives for thermal management in multicore architectures with 16 cores. Schemes employing both energy reduction and activity migration are explored and improvements for thread migration schemes are proposed.Peer ReviewedPostprint (published version

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Challenges and complexities in application of LCA approaches in the case of ICT for a sustainable future

    Get PDF
    In this work, three of many ICT-specific challenges of LCA are discussed. First, the inconsistency versus uncertainty is reviewed with regard to the meta-technological nature of ICT. As an example, the semiconductor technologies are used to highlight the complexities especially with respect to energy and water consumption. The need for specific representations and metric to separately assess products and technologies is discussed. It is highlighted that applying product-oriented approaches would result in abandoning or disfavoring of new technologies that could otherwise help toward a better world. Second, several believed-untouchable hot spots are highlighted to emphasize on their importance and footprint. The list includes, but not limited to, i) User Computer-Interfaces (UCIs), especially screens and displays, ii) Network-Computer Interlaces (NCIs), such as electronic and optical ports, and iii) electricity power interfaces. In addition, considering cross-regional social and economic impacts, and also taking into account the marketing nature of the need for many ICT's product and services in both forms of hardware and software, the complexity of End of Life (EoL) stage of ICT products, technologies, and services is explored. Finally, the impact of smart management and intelligence, and in general software, in ICT solutions and products is highlighted. In particular, it is observed that, even using the same technology, the significance of software could be highly variable depending on the level of intelligence and awareness deployed. With examples from an interconnected network of data centers managed using Dynamic Voltage and Frequency Scaling (DVFS) technology and smart cooling systems, it is shown that the unadjusted assessments could be highly uncertain, and even inconsistent, in calculating the management component's significance on the ICT impacts.Comment: 10 pages. Preprint/Accepted of a paper submitted to the ICT4S Conferenc

    Iso-energy-efficiency: An approach to power-constrained parallel computation

    Get PDF
    Future large scale high performance supercomputer systems require high energy efficiency to achieve exaflops computational power and beyond. Despite the need to understand energy efficiency in high-performance systems, there are few techniques to evaluate energy efficiency at scale. In this paper, we propose a system-level iso-energy-efficiency model to analyze, evaluate and predict energy-performance of data intensive parallel applications with various execution patterns running on large scale power-aware clusters. Our analytical model can help users explore the effects of machine and application dependent characteristics on system energy efficiency and isolate efficient ways to scale system parameters (e.g. processor count, CPU power/frequency, workload size and network bandwidth) to balance energy use and performance. We derive our iso-energy-efficiency model and apply it to the NAS Parallel Benchmarks on two power-aware clusters. Our results indicate that the model accurately predicts total system energy consumption within 5% error on average for parallel applications with various execution and communication patterns. We demonstrate effective use of the model for various application contexts and in scalability decision-making

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio
    • …
    corecore