2,881 research outputs found

    Accurate non-intrusive residual bandwidth estimation in WMNs

    Get PDF
    The multi-access scheme of 802.11 wireless networks imposes difficulties in achieving predictable service quality in multi-hop networks. In such networks, the residual capacity of wireless links should be estimated for resource allocation services such as flow admission control. In this paper, we propose an accurate and non-intrusive method to estimate the residual bandwidth of an 802.11 link. Inputs from neighboring network activity measurements and from a basic collision detection mechanism are fed to the analytical model so that the proposed algorithm calculates the maximum allowable traffic level for this link. We evaluate the efficiency of the method via OPNET simulations, and show that the percent estimation error is significantly lower than two other prominent estimation methods, bounded only between 2.5-7.5%. We also demonstrate that flow admission control is successfully achieved in a realistic WMN scenario. Flow control through our proposed algorithm keeps the unsatisfied traffic demand bounded and at a negligibly low level, which is less than an order of magnitude of the other two methods

    Using multiple metrics for rate adaptation algorithms in IEEE 802.11 WLANs

    Get PDF

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised
    • 

    corecore