695 research outputs found

    Model Predictive Energy Management for Building Microgrids with IoT-based Controllable Loads

    Get PDF
    This thesis develops an economic scheduling framework for a building microgrid with internet of things (IoT) based flexible loads to synchronize the buildings’ controllable components, with occupant behavior and environmental conditions. We employ model predictive control (MPC) methods to minimize building operating costs, while maximizing the utilization of the on-site resources. The main research thrusts are: 1) Developing the building microgrid model; 2) Defining different building operation strategies; 3) Minimizing the building’s daily operating costs. Simulation results show that the proposed approach provides superior energy cost savings and peak load reduction in comparison with other operation controls, such as All from Utility (AFU), AFU with installed IoT-based Building Energy Management System (BEMS), and MPC-Mix Integer Linear Programming (MILP) without IoT-based BEMS. An economic analysis is also conducted to provide a road map for the implementation of installing advanced energy efficiency technologies across loads in building microgrid and integrating them with the building microgrid’s control strategy

    A Review of Energy Management Systems and Organizational Structures of Prosumers

    Get PDF
    Thisreviewprovidesthestateoftheartofenergymanagementsystems(EMS)and organizationalstructuresofprosumers.Integrationofrenewableenergysources(RES)intothe householdbringsnewchallengesinoptimaloperation,powerquality,participationintheelectricity marketandpowersystemstability.AcommonsolutiontothesechallengesistodevelopanEMSwith differentprosumerorganizationalstructures.EMSdevelopmentisamultidisciplinaryprocessthat needstoinvolveseveralaspectsofobservation.Thispaperprovidesanoverviewoftheprosumer organizationalandcontrolstructures,typesandelements,predictionmethodsofinputparameters, optimizationframeworks,optimizationmethods,objectivefunctions,constraintsandthemarket environment.Specialattentionisgiventotheoptimizationframeworkandpredictionofinput parameters,whichrepresentsroomforimprovement,thatmitigatetheimpactofuncertainties associatedwithRES-basedgeneration,consumptionandmarketpricesonoptimaloperation.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnolo­gies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Get PDF
    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods

    Shared Community Energy Storage Allocation and Optimization

    Get PDF
    Distributed Energy Resources (DERs) have been playing an increasingly important role for managing households energy costs. DERs consist primarily of energy generation and storage systems utilized by individual households or shared among them as a community. This research proposes a framework to allocate shared energy storage within a community and to then optimize the operational cost of electricity using a mixed integer linear programming (MILP). The allocation options of energy storage include the option of private energy storage (PES) and three options of community energy storage (CES): random, diverse, and homogeneous allocation. With various load options of appliances, photovoltaic (PV) generation and energy storage set-ups, the operational cost of electricity for each household is minimized to provide the optimal operation scheduling. In addition to the electricity operational cost, energy storage utilization, and operation fairness are used to compare different allocation options of storage systems. Computational results are presented on two real use cases: Waterloo, Canada and Ennis, Ireland. For each case, one typical summer day and one common winter day are selected to simulate different scenarios of the two seasons. Given the allocation options and ownership rates of residential energy storage deployment, this research shows the advantage of using CES as opposed to PES and evaluates the cost savings which can facilitate future deployment of CES

    Optimal Distribution Reconfiguration and Demand Management within Practical Operational Constraints

    Get PDF
    This dissertation focuses on specific aspects of the technical design and operation of a `smart\u27 distribution system incorporating new technology in the design process. The main purpose of this dissertation is to propose new algorithms in order to achieve a more reliable and economic distribution system. First, a general approach based on Mixed Integer Programming (MIP) is proposed to formulate the reconfiguration problem for a radial/weakly meshed distribution network or restoration following a fault. Two objectives considered in this study are to minimize the active power loss, and to minimize the number of switching operations with respect to operational constraints, such as power balance, line ow limits, voltage limit, and radiality of the network. The latter is the most challenging issue in solving the problem by MIP. A novel approach based on Depth-First Search (DFS) algorithm is implemented to avoid cycles and loops in the system. Due to insufficient measurements and high penetration of controllable loads and renewable resources, reconfiguration with deterministic optimization may not lead to an optimal/feasible result. Therefore, two different methods are proposed to solve the reconfiguration problem in presence of load uncertainty. Second, a new pricing algorithm for residential load participation in demand response program is proposed. The objective is to reduce the cost to the utility company while mitigating the impact on customer satisfaction. This is an iterative approach in which residents and energy supplier exchange information on consumption and price. The prices as well as appliance schedule for the residential customers will be achieved at the point of convergence. As an important contribution of this work, distribution network constraints such as voltage limits, equipment capacity limits, and phase balance constraints are considered in the pricing algorithm. Similar to the locational marginal price (LMP) at the transmission level, different prices for distribution nodes will be obtained. Primary consideration in the proposed approach, and frequently ignored in the literature, is to avoid overly sophisticated decision-making at the customer level. Most customers will have limited capacity or need for elaborate scheduling where actual energy cost savings will be modest

    Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies

    Full text link
    [EN] The market for electric vehicles (EVs) has grown with each year, and EVs are considered to be a proper solution for the mitigation of urban pollution. So far, not much attention has been devoted to the use of EVs for public transportation, such as taxis and buses. However, a massive introduction of electric taxis (ETs) and electric buses (EBs) could generate issues in the grid. The challenges are different from those of private EVs, as their required load is much higher and the related time constraints must be considered with much more attention. These issues have begun to be studied within the last few years. This paper presents a review of the different approaches that have been proposed by various authors, to mitigate the impact of EBs and ETs on the future smart grid. Furthermore, some projects with regard to the integration of ETs and EBs around the world are presented. Some guidelines for future works are also proposed.This research was funded by the project SIS.JCG.19.03 of Universidad de las Americas, Ecuador.Clairand-Gómez, J.; Guerra-Terán, P.; Serrano-Guerrero, JX.; González-Rodríguez, M.; Escrivá-Escrivá, G. (2019). Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies. Energies. 12(16):1-22. https://doi.org/10.3390/en12163114S1221216Emadi, A. (2011). Transportation 2.0. IEEE Power and Energy Magazine, 9(4), 18-29. doi:10.1109/mpe.2011.941320Fahimi, B., Kwasinski, A., Davoudi, A., Balog, R., & Kiani, M. (2011). Charge It! IEEE Power and Energy Magazine, 9(4), 54-64. doi:10.1109/mpe.2011.941321Yilmaz, M., & Krein, P. T. (2013). Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5), 2151-2169. doi:10.1109/tpel.2012.2212917Tagliaferri, C., Evangelisti, S., Acconcia, F., Domenech, T., Ekins, P., Barletta, D., & Lettieri, P. (2016). Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineering Research and Design, 112, 298-309. doi:10.1016/j.cherd.2016.07.003Zackrisson, M., Fransson, K., Hildenbrand, J., Lampic, G., & O’Dwyer, C. (2016). Life cycle assessment of lithium-air battery cells. Journal of Cleaner Production, 135, 299-311. doi:10.1016/j.jclepro.2016.06.104Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. doi:10.1016/j.enpol.2012.05.060Shen, W., Han, W., Chock, D., Chai, Q., & Zhang, A. (2012). Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China. Energy Policy, 49, 296-307. doi:10.1016/j.enpol.2012.06.038Wang, R., Wu, Y., Ke, W., Zhang, S., Zhou, B., & Hao, J. (2015). Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection? Applied Energy, 147, 92-103. doi:10.1016/j.apenergy.2015.01.107Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481Shafiee, S., Fotuhi-Firuzabad, M., & Rastegar, M. (2013). Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Transactions on Smart Grid, 4(3), 1351-1360. doi:10.1109/tsg.2013.2251483Pieltain Fernandez, L., Gomez San Roman, T., Cossent, R., Mateo Domingo, C., & Frias, P. (2011). Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks. IEEE Transactions on Power Systems, 26(1), 206-213. doi:10.1109/tpwrs.2010.2049133Lucas, A., Bonavitacola, F., Kotsakis, E., & Fulli, G. (2015). Grid harmonic impact of multiple electric vehicle fast charging. Electric Power Systems Research, 127, 13-21. doi:10.1016/j.epsr.2015.05.012Turker, H., Bacha, S., Chatroux, D., & Hably, A. (2012). Low-Voltage Transformer Loss-of-Life Assessments for a High Penetration of Plug-In Hybrid Electric Vehicles (PHEVs). IEEE Transactions on Power Delivery, 27(3), 1323-1331. doi:10.1109/tpwrd.2012.2193423Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. Journal of Power Sources, 144(1), 268-279. doi:10.1016/j.jpowsour.2004.12.025Guille, C., & Gross, G. (2009). A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy, 37(11), 4379-4390. doi:10.1016/j.enpol.2009.05.053Geng, Z., Conejo, A. J., Chen, Q., Xia, Q., & Kang, C. (2017). Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production. Applied Energy, 193, 540-549. doi:10.1016/j.apenergy.2017.02.051Verbruggen, A., Fischedick, M., Moomaw, W., Weir, T., Nadaï, A., Nilsson, L. J., … Sathaye, J. (2010). Renewable energy costs, potentials, barriers: Conceptual issues. Energy Policy, 38(2), 850-861. doi:10.1016/j.enpol.2009.10.036Oda, T., Aziz, M., Mitani, T., Watanabe, Y., & Kashiwagi, T. (2018). Mitigation of congestion related to quick charging of electric vehicles based on waiting time and cost–benefit analyses: A japanese case study. Sustainable Cities and Society, 36, 99-106. doi:10.1016/j.scs.2017.10.024Arkin, E. M., Carmi, P., Katz, M. J., Mitchell, J. S. B., & Segal, M. (2019). Locating battery charging stations to facilitate almost shortest paths. Discrete Applied Mathematics, 254, 10-16. doi:10.1016/j.dam.2018.07.019Gallardo-Lozano, J., Milanés-Montero, M. I., Guerrero-Martínez, M. A., & Romero-Cadaval, E. (2012). Electric vehicle battery charger for smart grids. Electric Power Systems Research, 90, 18-29. doi:10.1016/j.epsr.2012.03.015Aziz, M., Oda, T., & Ito, M. (2016). Battery-assisted charging system for simultaneous charging of electric vehicles. Energy, 100, 82-90. doi:10.1016/j.energy.2016.01.069Mehboob, N., Restrepo, M., Canizares, C. A., Rosenberg, C., & Kazerani, M. (2019). Smart Operation of Electric Vehicles With Four-Quadrant Chargers Considering Uncertainties. IEEE Transactions on Smart Grid, 10(3), 2999-3009. doi:10.1109/tsg.2018.2816404García-Villalobos, J., Zamora, I., San Martín, J. I., Asensio, F. J., & Aperribay, V. (2014). Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. Renewable and Sustainable Energy Reviews, 38, 717-731. doi:10.1016/j.rser.2014.07.040Richardson, D. B. (2013). Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration. Renewable and Sustainable Energy Reviews, 19, 247-254. doi:10.1016/j.rser.2012.11.042Haidar, A. M. A., Muttaqi, K. M., & Sutanto, D. (2014). Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review. Energy Conversion and Management, 86, 689-700. doi:10.1016/j.enconman.2014.06.025Mwasilu, F., Justo, J. J., Kim, E.-K., Do, T. D., & Jung, J.-W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews, 34, 501-516. doi:10.1016/j.rser.2014.03.031Habib, S., Kamran, M., & Rashid, U. (2015). Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks – A review. Journal of Power Sources, 277, 205-214. doi:10.1016/j.jpowsour.2014.12.020Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720-732. doi:10.1016/j.rser.2015.09.012Raslavičius, L., Azzopardi, B., Keršys, A., Starevičius, M., Bazaras, Ž., & Makaras, R. (2015). Electric vehicles challenges and opportunities: Lithuanian review. Renewable and Sustainable Energy Reviews, 42, 786-800. doi:10.1016/j.rser.2014.10.076Rahman, I., Vasant, P. M., Singh, B. S. M., Abdullah-Al-Wadud, M., & Adnan, N. (2016). Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews, 58, 1039-1047. doi:10.1016/j.rser.2015.12.353Faddel, S., Al-Awami, A., & Mohammed, O. (2018). Charge Control and Operation of Electric Vehicles in Power Grids: A Review. Energies, 11(4), 701. doi:10.3390/en11040701Ercan, T., Onat, N. C., & Tatari, O. (2016). Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. Journal of Cleaner Production, 133, 1260-1276. doi:10.1016/j.jclepro.2016.06.051Kwan, S. C., & Hashim, J. H. (2016). A review on co-benefits of mass public transportation in climate change mitigation. Sustainable Cities and Society, 22, 11-18. doi:10.1016/j.scs.2016.01.004Kolbe, K. (2019). Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transportation. Transport Policy, 80, 1-11. doi:10.1016/j.tranpol.2019.05.007Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., & Diaz Suarez, M. V. (2018). Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM 2.5 pollution in a mid-size South American city. Atmospheric Pollution Research, 9(1), 66-75. doi:10.1016/j.apr.2017.07.001Dell’ Olio, L., Ibeas, A., & Cecin, P. (2011). The quality of service desired by public transport users. Transport Policy, 18(1), 217-227. doi:10.1016/j.tranpol.2010.08.005Mahmoud, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews, 62, 673-684. doi:10.1016/j.rser.2016.05.019Nissan Leafhttps://www.nissan.co.uk/vehicles/new-vehicles/leaf/range-charging.htmlIntroducing the Fully Charged 2020 Kia Soul EVhttps://www.kia.com/us/en/content/vehicles/upcoming-vehicles/2020-soul-eve6https://en.byd.com/wp-content/uploads/2017/06/e6_cutsheet.pdfTesla Model Shttps://www.tesla.com/modelsBushttps://en.byd.com/bus/40-electric-motor-coach/Urbino Electrichttps://www.solarisbus.com/en/vehicles/zero-emissions/urbino-electricVolvo 7900 Electrichttps://www.volvobuses.co.uk/en-gb/our-offering/buses/volvo-7900-electric/specifications.htmlCollin, R., Miao, Y., Yokochi, A., Enjeti, P., & von Jouanne, A. (2019). Advanced Electric Vehicle Fast-Charging Technologies. Energies, 12(10), 1839. doi:10.3390/en12101839Yang, Y., El Baghdadi, M., Lan, Y., Benomar, Y., Van Mierlo, J., & Hegazy, O. (2018). Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies, 11(7), 1716. doi:10.3390/en11071716Bi, Z., Song, L., De Kleine, R., Mi, C. C., & Keoleian, G. A. (2015). Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Applied Energy, 146, 11-19. doi:10.1016/j.apenergy.2015.02.031Siqi Li, & Mi, C. C. (2015). Wireless Power Transfer for Electric Vehicle Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 4-17. doi:10.1109/jestpe.2014.2319453Musavi, F., & Eberle, W. (2014). Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electronics, 7(1), 60-66. doi:10.1049/iet-pel.2013.0047Wang, Z., Wei, X., & Dai, H. (2015). Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles. Energies, 9(1), 10. doi:10.3390/en9010010Sarker, M. R., Pandzic, H., & Ortega-Vazquez, M. A. (2015). Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. IEEE Transactions on Power Systems, 30(2), 901-910. doi:10.1109/tpwrs.2014.2331560Adegbohun, F., von Jouanne, A., & Lee, K. (2019). Autonomous Battery Swapping System and Methodologies of Electric Vehicles. Energies, 12(4), 667. doi:10.3390/en12040667OPPChargeCommon Interface for Automated Charging of Hybrid Electric and Electric Commercial Vehicleshttps://www.oppcharge.org/dok/OPPCharge Specification 2nd edition 20190421.pdfFast Charging of Electric Vehicleshttps://www.oppcharge.orgJiang, C. X., Jing, Z. X., Cui, X. R., Ji, T. Y., & Wu, Q. H. (2018). Multiple agents and reinforcement learning for modelling charging loads of electric taxis. Applied Energy, 222, 158-168. doi:10.1016/j.apenergy.2018.03.164Fraile-Ardanuy, J., Castano-Solis, S., Álvaro-Hermana, R., Merino, J., & Castillo, Á. (2018). Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet. Energy Conversion and Management, 157, 59-70. doi:10.1016/j.enconman.2017.11.070Rao, R., Cai, H., & Xu, M. (2018). Modeling electric taxis’ charging behavior using real-world data. International Journal of Sustainable Transportation, 12(6), 452-460. doi:10.1080/15568318.2017.1388887Litzlbauer, M. (2015). Technische Machbarkeitsanalyse einer rein elektrisch betriebenen Taxiflotte. e & i Elektrotechnik und Informationstechnik, 132(3), 172-177. doi:10.1007/s00502-015-0296-3Liao, B., Li, L., Li, B., Mao, J., Yang, J., Wen, F., & Salam, M. A. (2016). Load modeling for electric taxi battery charging and swapping stations: Comparison studies. 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). doi:10.1109/spec.2016.7846135Zou, Y., Wei, S., Sun, F., Hu, X., & Shiao, Y. (2016). Large-scale deployment of electric taxis in Beijing: A real-world analysis. Energy, 100, 25-39. doi:10.1016/j.energy.2016.01.062Asamer, J., Reinthaler, M., Ruthmair, M., Straub, M., & Puchinger, J. (2016). Optimizing charging station locations for urban taxi providers. Transportation Research Part A: Policy and Practice, 85, 233-246. doi:10.1016/j.tra.2016.01.014Yang, J., Dong, J., & Hu, L. (2017). A data-driven optimization-based approach for siting and sizing of electric taxi charging stations. Transportation Research Part C: Emerging Technologies, 77, 462-477. doi:10.1016/j.trc.2017.02.014Jiang, C., Jing, Z., Ji, T., & Wu, Q. (2018). Optimal location of PEVCSs using MAS and ER approach. IET Generation, Transmission & Distribution, 12(20), 4377-4387. doi:10.1049/iet-gtd.2017.1907Pan, A., Zhao, T., Yu, H., & Zhang, Y. (2019). Deploying Public Charging Stations for Electric Taxis: A Charging Demand Simulation Embedded Approach. IEEE Access, 7, 17412-17424. doi:10.1109/access.2019.2894780Chen Lianfu, Zhang, W., Huang, Y., & Zhang, D. (2014). Research on the charging station service radius of electric taxis. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). doi:10.1109/itec-ap.2014.6941081Yang, Y., Zhang, W., Niu, L., & Jiang, J. (2015). Coordinated Charging Strategy for Electric Taxis in Temporal and Spatial Scale. Energies, 8(2), 1256-1272. doi:10.3390/en8021256Niu, L., & Zhang, D. (2015). Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization. The Scientific World Journal, 2015, 1-9. doi:10.1155/2015/354952Yang, Z., Guo, T., You, P., Hou, Y., & Qin, S. J. (2019). Distributed Approach for Temporal–Spatial Charging Coordination of Plug-in Electric Taxi Fleet. IEEE Transactions on Industrial Informatics, 15(6), 3185-3195. doi:10.1109/tii.2018.2879515Rossi, F., Iglesias, R., Alizadeh, M., & Pavone, M. (2020). On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms. IEEE Transactions on Control of Network Systems, 7(1), 384-397. doi:10.1109/tcns.2019.2923384Liang, Y., Zhang, X., Xie, J., & Liu, W. (2017). An Optimal Operation Model and Ordered Charging/Discharging Strategy for Battery Swapping Stations. Sustainability, 9(5), 700. doi:10.3390/su9050700XU, X., YAO, L., ZENG, P., LIU, Y., & CAI, T. (2015). Architecture and performance analysis of a smart battery charging and swapping operation service network for electric vehicles in China. Journal of Modern Power Systems and Clean Energy, 3(2), 259-268. doi:10.1007/s40565-015-0118-yJing, Z., Fang, L., Lin, S., & Shao, W. (2014). Modeling for electric taxi load and optimization model for charging/swapping facilities of electric taxi. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). doi:10.1109/itec-ap.2014.6941160Wang, Y., Ding, W., Huang, L., Wei, Z., Liu, H., & Stankovic, J. A. (2018). Toward Urban Electric Taxi Systems in Smart Cities: The Battery Swapping Challenge. IEEE Transactions on Vehicular Technology, 67(3), 1946-1960. doi:10.1109/tvt.2017.2774447You, P., Yang, Z., Zhang, Y., Low, S. H., & Sun, Y. (2016). Optimal Charging Schedule for a Battery Switching Station Serving Electric Buses. IEEE Transactions on Power Systems, 31(5), 3473-3483. doi:10.1109/tpwrs.2015.2487273Yang, Z., Sun, L., Chen, J., Yang, Q., Chen, X., & Xing, K. (2014). Profit Maximization for Plug-In Electric Taxi With Uncertain Future Electricity Prices. IEEE Transactions on Power Systems, 29(6), 3058-3068. doi:10.1109/tpwrs.2014.2311120Yang, Z., Sun, L., Ke, M., Shi, Z., & Chen, J. (2014). Optimal Charging Strategy for Plug-In Electric Taxi With Time-Varying Profits. IEEE Transactions on Smart Grid, 5(6), 2787-2797. doi:10.1109/tsg.2014.2354473Yang, J., Xu, Y., & Yang, Z. (2017). Regulating the Collective Charging Load of Electric Taxi Fleet via Real-Time Pricing. IEEE Transactions on Power Systems, 32(5), 3694-3703. doi:10.1109/tpwrs.2016.2643685Du, R., Liao, G., Zhang, E., & Wang, J. (2018). Battery charge or change, which is better? A case from Beijing, China. Journal of Cleaner Production, 192, 698-711. doi:10.1016/j.jclepro.2018.05.021Yang, J., Dong, J., Lin, Z., & Hu, L. (2016). Predicting market potential and environmental benefits of deploying electric taxis in Nanjing, China. Transportation Research Part D: Transport and Environment, 49, 68-81. doi:10.1016/j.trd.2016.08.037You, P., Low, S. H., Yang, Z., Zhang, Y., & Lingkun Fu. (2016). Real-time recommendation algorithm of battery swapping stations for electric taxis. 2016 IEEE Power and Energy Society General Meeting (PESGM). doi:10.1109/pesgm.2016.7741620Dai, Q., Cai, T., Duan, S., & Zhao, F. (2014). Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station. IEEE Transactions on Power Delivery, 29(4), 1909-1917. doi:10.1109/tpwrd.2014.2308990Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163-175. doi:10.1016/j.epsr.2016.09.032Zhang, X. (2018). Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm. Energies, 11(6), 1449. doi:10.3390/en11061449Ding, H., Hu, Z., & Song, Y. (2015). Value of the energy storage system in an electric bus fast charging station. Applied Energy, 157, 630-639. doi:10.1016/j.apenergy.2015.01.058Qin, N., Gusrialdi, A., Paul Brooker, R., & T-Raissi, A. (2016). Numerical analysis of electric bus fast charging strategies for demand charge reduction. Transportation Research Part A: Policy and Practice, 94, 386-396. doi:10.1016/j.tra.2016.09.014Huimiao Chen, Zechun Hu, Zhiwei Xu, Jiayi Li, Honggang Zhang, Xue Xia, … Mingwei Peng. (2016). Coordinated charging strategies for electric bus fast charging stations. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). doi:10.1109/appeec.2016.7779677Chen, H., Hu, Z., Zhang, H., & Luo, H. (2018). Coordinated charging and discharging strategies for plug-in electric bus fast charging station with energy storage system. IET Generation, Transmission & Distribution, 12(9), 2019-2028. doi:10.1049/iet-gtd.2017.0636Gao, Y., Guo, S., Ren, J., Zhao, Z., Ehsan, A., & Zheng, Y. (2018). An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors. Energies, 11(8), 2060. doi:10.3390/en11082060Cheng, Y., & Tao, J. (2018). Optimization of A Micro Energy Network Integrated with Electric Bus Battery Swapping Station and Distributed PV. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). doi:10.1109/ei2.2018.8582236Sebastiani, M. T., Luders, R., & Fonseca, K. V. O. (2016). Evaluating Electric Bus Operation for a Real-World BRT Public Transportation Using Simulation Optimization. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2777-2786. doi:10.1109/tits.2016.2525800Wang, Y., Huang, Y., Xu, J., & Barclay, N. (2017). Optimal recharging scheduling for urban electric buses: A case study in Davis. Transportation Research Part E: Logistics and Transportation Review, 100, 115-132. doi:10.1016/j.tre.2017.01.001Liu, Z., Song, Z., & He, Y. (2018). Planning of Fast-Charging Stations for a Battery Electric Bus System under Energy Consumption Uncertainty. Transportation Research Record: Journal of the Transportation Research Board, 2672(8), 96-107. doi:10.1177/0361198118772953Leou, R.-C., & Hung, J.-J. (2017). Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations. Energies, 10(4), 483. doi:10.3390/en10040483Bak, D.-B., Bak, J.-S., & Kim, S.-Y. (2018). Strategies for Implementing Public Service Electric Bus Lines by Charging Type in Daegu Metropolitan City, South Korea. Sustainability, 10(10), 3386. doi:10.3390/su10103386Chen, Z., Yin, Y., & Song, Z. (2018). A cost-competitiveness analysis of charging infrastructure for electric bus operations. Transportation Research Part C: Emerging Technologies, 93, 351-366. doi:10.1016/j.trc.2018.06.006Cheng, Y., Wang, W., Ding, Z., & He, Z. (2019). Electric bus fast charging station resource planning consid
    corecore