19,706 research outputs found

    Neural connectivity in syntactic movement processing

    Get PDF
    Linguistic theory suggests non-canonical sentences subvert the dominant agent-verb-theme order in English via displacement of sentence constituents to argument (NP-movement) or non-argument positions (wh-movement). Both processes have been associated with the left inferior frontal gyrus and posterior superior temporal gyrus, but differences in neural activity and connectivity between movement types have not been investigated. In the current study, functional magnetic resonance imaging data were acquired from 21 adult participants during an auditory sentence-picture verification task using passive and active sentences contrasted to isolate NP-movement, and object- and subject-cleft sentences contrasted to isolate wh-movement. Then, functional magnetic resonance imaging data from regions common to both movement types were entered into a dynamic causal modeling analysis to examine effective connectivity for wh-movement and NP-movement. Results showed greater left inferior frontal gyrus activation for Wh > NP-movement, but no activation for NP > Wh-movement. Both types of movement elicited activity in the opercular part of the left inferior frontal gyrus, left posterior superior temporal gyrus, and left medial superior frontal gyrus. The dynamic causal modeling analyses indicated that neither movement type significantly modulated the connection from the left inferior frontal gyrus to the left posterior superior temporal gyrus, nor vice-versa, suggesting no connectivity differences between wh- and NP-movement. These findings support the idea that increased complexity of wh-structures, compared to sentences with NP-movement, requires greater engagement of cognitive resources via increased neural activity in the left inferior frontal gyrus, but both movement types engage similar neural networks.This work was supported by the NIH-NIDCD, Clinical Research Center Grant, P50DC012283 (PI: CT), and the Graduate Research Grant and School of Communication Graduate Ignition Grant from Northwestern University (awarded to EE). (P50DC012283 - NIH-NIDCD, Clinical Research Center Grant; Graduate Research Grant and School of Communication Graduate Ignition Grant from Northwestern University)Published versio

    A Contrast/Filling-In Model of 3-D Lightness Perception

    Full text link
    Wallach's ratio hypothesis states that local luminance ratios clr!termine lightness perception under variable illumination. While local luminance ratios successfully discount gradual variations in illumination (illumination constancy or Type I constancy), they fail to explain lightness constancy in general. Some examples of failures of the ratio hypothesis include effects suggesting the coplanar ratio hypothesis (Gilchrist 1977), "assimilation" effects, and configural effects such as the Benary cross, and White's illusion. The present article extends the Boundary Contour System/Feature Contour System (BCS/FCS) approach to provide an explanation of these effects in terms of a neural model of 3-D lightness perception. Lightness constancy of objects in front of different backgrounds (background constancy or Type II constancy) is used to provide functional constraints to the theory and suggest a contrast negation hypothesis which states that ratio measures between coplanar regions are given more weight in the determination of lightness. Simulations of the model applied to several stimuli including Benary cross and White's illusion show that contrast negation mechanisms modulate illumination constancy mechanisms to extend the explanatory power of the model. The model is also used to devise new stimuli that test theoretical predictions
    • …
    corecore