11,491 research outputs found

    A Home Security System Based on Smartphone Sensors

    Get PDF
    Several new smartphones are released every year. Many people upgrade to new phones, and their old phones are not put to any further use. In this paper, we explore the feasibility of using such retired smartphones and their on-board sensors to build a home security system. We observe that door-related events such as opening and closing have unique vibration signatures when compared to many types of environmental vibrational noise. These events can be captured by the accelerometer of a smartphone when the phone is mounted on a wall near a door. The rotation of a door can also be captured by the magnetometer of a smartphone when the phone is mounted on a door. We design machine learning and threshold-based methods to detect door opening events based on accelerometer and magnetometer data and build a prototype home security system that can detect door openings and notify the homeowner via email, SMS and phone calls upon break-in detection. To further augment our security system, we explore using the smartphone’s built-in microphone to detect door and window openings across multiple doors and windows simultaneously. Experiments in a residential home show that the accelerometer- based detection can detect door open events with an accuracy higher than 98%, and magnetometer-based detection has 100% accuracy. By using the magnetometer method to automate the training phase of a neural network, we find that sound-based detection of door openings has an accuracy of 90% across multiple doors

    On the Relation Between Mobile Encounters and Web Traffic Patterns: A Data-driven Study

    Full text link
    Mobility and network traffic have been traditionally studied separately. Their interaction is vital for generations of future mobile services and effective caching, but has not been studied in depth with real-world big data. In this paper, we characterize mobility encounters and study the correlation between encounters and web traffic profiles using large-scale datasets (30TB in size) of WiFi and NetFlow traces. The analysis quantifies these correlations for the first time, across spatio-temporal dimensions, for device types grouped into on-the-go Flutes and sit-to-use Cellos. The results consistently show a clear relation between mobility encounters and traffic across different buildings over multiple days, with encountered pairs showing higher traffic similarity than non-encountered pairs, and long encounters being associated with the highest similarity. We also investigate the feasibility of learning encounters through web traffic profiles, with implications for dissemination protocols, and contact tracing. This provides a compelling case to integrate both mobility and web traffic dimensions in future models, not only at an individual level, but also at pairwise and collective levels. We have released samples of code and data used in this study on GitHub, to support reproducibility and encourage further research (https://github.com/BabakAp/encounter-traffic).Comment: Technical report with details for conference paper at MSWiM 2018, v3 adds GitHub lin

    Modeling the Resource Requirements of Convolutional Neural Networks on Mobile Devices

    Full text link
    Convolutional Neural Networks (CNNs) have revolutionized the research in computer vision, due to their ability to capture complex patterns, resulting in high inference accuracies. However, the increasingly complex nature of these neural networks means that they are particularly suited for server computers with powerful GPUs. We envision that deep learning applications will be eventually and widely deployed on mobile devices, e.g., smartphones, self-driving cars, and drones. Therefore, in this paper, we aim to understand the resource requirements (time, memory) of CNNs on mobile devices. First, by deploying several popular CNNs on mobile CPUs and GPUs, we measure and analyze the performance and resource usage for every layer of the CNNs. Our findings point out the potential ways of optimizing the performance on mobile devices. Second, we model the resource requirements of the different CNN computations. Finally, based on the measurement, pro ling, and modeling, we build and evaluate our modeling tool, Augur, which takes a CNN configuration (descriptor) as the input and estimates the compute time and resource usage of the CNN, to give insights about whether and how e ciently a CNN can be run on a given mobile platform. In doing so Augur tackles several challenges: (i) how to overcome pro ling and measurement overhead; (ii) how to capture the variance in different mobile platforms with different processors, memory, and cache sizes; and (iii) how to account for the variance in the number, type and size of layers of the different CNN configurations
    corecore