67 research outputs found

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Tendon-Driven Notched Needle for Robot-Assisted Prostate Interventions

    Get PDF
    M.S

    Multi Degree of Freedom Hinge Joints Embedded on Tubes for Miniature Steerable Medical Devices

    Get PDF
    With the proliferation of successful minimally invasive surgical techniques, comes the challenge of shrinking the size of surgical instruments further to facilitate use in applications such as neurosurgery, pediatric surgery, and needle procedures. The present thesis introduces laser machined, multi-degree-of-freedom (DoF) hinge joints embedded on tubes, as a possible means to realize such miniature instruments without the need for any assembly. A method to design such a joint for an estimated range of motion is explored by using geometric principles. A geometric model is developed to characterize the joint and relate it to the laser machining parameters, design parameters, and the workpiece parameters. The extent of interference between the moving parts of the joint can be used to predict the range of motion of the joint for rigid tubes and for future design optimization. The total usable workspace is estimated using kinematic principles for joints in series and for two sets of orthogonal joints. The predicted range of motion was compared to the measured values for fabricated samples of different hinge sizes and kerf dimensions, and it was shown that the predicted values are close to the measured ranges across samples. The embedded hinge joints described in this thesis could be used for micro-robotic applications and minimally invasive surgical devices for neurosurgery and pediatric surgery. Our work can open up avenues to a new class of miniature robotic medical devices with hinge joints and a usable channel for drug delivery

    An Underactuated Flexible Instrument for Single Incision Laparoscopic Surgery

    Get PDF
    More and more patients and surgeons have switched from open surgery to minimally invasive surgery over these years. This exciting advancement has brought massive benefits to patients. Researchers and institutions have proposed robot assisted surgery which combines the advantage of developed robot system and human experience. This thesis reviews state of the art in this area and analyze some advanced surgical instrument for single incision laparoscopic instrument, then propose a design of robotic instrument for single incision laparoscopic surgery which can be integrated with collaborative robot manipulator to construct a surgical robot system.Single-incision laparoscopic surgery (SILS) has its own features and advantages compare to other minimally invasive surgery techniques which also lead to special design requirements for SILS instruments, among which increased flexibility compare to multi-incision surgery instruments is an important part. So we want to design a robotic surgical instrument that has increased flexibility compare to traditional instruments for other MIS techniques. As a laparoscopic robotic instrument compactness and light weight are also our considerations.Single incision laparoscopic surgery (SILS) inserts multiple instruments and laparoscopes through a single trocar which reduces trauma. But this improvement for patients caused difficulty in operation because of instruments triangulation, laparoscope field-of-view, etc. That brings up our challenges in designing a robotic instruments. Designing a highly flexible robotic instrument that provides sufficient workspace and good triangulation in order to relieve the difficulties introduced by narrow instrument trocars.We want to implement a highly recognized surgical instrument with a designed robotic instrument actuation pack. These two parts compose a robotic surgical instrument for single incision laparoscopic surgery. And we want to analyze the performance and viability of our design approach for SILS application

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Design and Modeling of Multi-Arm Continuum Robots

    Get PDF
    Continuum robots are snake-like systems able to deliver optimal therapies to pathologies deep inside the human cavity by following 3D complex paths. They show promise when anatomical pathways need to be traversed thanks to their enhanced flexibility and dexterity and show advantages when deployed in the field of single-port surgery. This PhD thesis concerns the development and modelling of multi-arm and hybrid continuum robots for medical interventions. The flexibility and steerability of the robot’s end-effector are achieved through concentric tube technology and push/pull technology. Medical robotic prototypes have been designed as proof of concepts and testbeds of the proposed theoretical works.System design considers the limitations and constraints that occur in the surgical procedures for which the systems were proposed for. Specifically, two surgical applications are considered. Our first prototype was designed to deliver multiple tools to the eye cavity for deep orbital interventions focusing on a currently invasive intervention named Optic Nerve Sheath Fenestration (ONSF). This thesis presents the end-to-end design, engineering and modelling of the prototype. The developed prototype is the first suggested system to tackle the challenges (limited workspace, need for enhanced flexibility and dexterity, danger for harming tissue with rigid instruments, extensive manipulation of the eye) arising in ONSF. It was designed taking into account the clinical requirements and constraints while theoretical works employing the Cosserat rod theory predict the shape of the continuum end-effector. Experimental runs including ex vivo experimental evaluations, mock-up surgical scenarios and tests with and without loading conditions prove the concept of accessing the eye cavity. Moreover, a continuum robot for thoracic interventions employing push/pull technology was designed and manufactured. The developed system can reach deep seated pathologies in the lungs and access regions in the bronchial tree that are inaccessible with rigid and straight instruments either robotically or manually actuated. A geometrically exact model of the robot that considers both the geometry of the robot and mechanical properties of the backbones is presented. It can predict the shape of the bronchoscope without the constant curvature assumption. The proposed model can also predict the robot shape and micro-scale movements accurately in contrast to the classic geometric model which provides an accurate description of the robot’s differential kinematics for large scale movements

    Comparative Review of Endoscopic Devices Articulations Technologies Developed for Minimally Invasive Medical Procedures

    Get PDF
    This study introduces a comparative performance analysis of the technological solutions that have been used to build distal active articulations for minimally invasive medical procedures. The aim is to provide a practical and concise database and classification tool for anyone that wants to learn more about the technologies involved in minimally invasive medical devices, or for any designer interested in further improving these devices. A review of the different articulations developed in this field is therefore performed and organized by both actuation technology and structural architecture. Details are presented concerning the mechanical structures as well as the actuation and the mechanical transmission technologies available. The solutions are evaluated keeping as a reference some chosen required performances and characteristics for minimally invasive surgical procedures. Finally, a quantified comparison chart of these devices is given regarding selected criteria of interest for minimally invasive surgical application

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    DEVELOPMENT OF A SOFT PNEUMATIC ACTUATOR FOR MODULAR ROBOTIC MECHANISMS

    Get PDF
    Soft robotics is a widely and rapidly growing field of research today. Soft pneumatic actuators, as a fundamental element in soft robotics, have gained huge popularity and are being employed for the development of soft robots. During the last decade, a variety of hyper-elastic robotic systems have been realized. As the name suggests, such robots are made up of soft materials, and do not have any underlying rigid mechanical structure. These robots are actuated employing various methods like pneumatic, electroactive, jamming etc. Generally, in order to achieve a desired mechanical response to produce required actuation or manipulation, two or more materials having different stiffness are utilized to develop a soft robot. However, this method introduces complications in the fabrication process as well as in further design flexibility and modifications. The current work presents a design scheme of a soft robotic actuator adapting an easier fabrication approach, which is economical and environment friendly as well. The purpose is the realization of a soft pneumatic actuator having functional ability to produce effective actuation, and which is further employable to develop modular and scalable mechanisms. That infers to scrutinize the profile and orientation of the internal actuation cavity and the outer shape of viii the actuator. Utilization of a single material for this actuator has been considered to make this design scheme convenient. A commercial silicone rubber was selected which served for an economical process both in terms of the cost as well as its accommodating fabrication process through molding. In order to obtain the material behavior, \u2018Ansys Workbench 17.1 R \u2019 has been used. Cubic outline for the actuator aided towards the realization of a body shape which can easily be engaged for the development of modular mechanisms employing multiple units. This outer body shape further facilitates to achieve the stability and portability of the actuator. The soft actuator has been named \u2018Soft Cubic Module\u2019 based on its external cubic shape. For the internal actuation cavity design, various shapes, such as spherical, elliptical and cylindrical, were examined considering their different sizes and orientations within the cubic module. These internal cavities were simulated in order to achieve single degree of freedom actuation. That means, only one face of the cube is principally required to produce effective deformation. \u2018Creo Perametric 3.0 M 130\u2019 has been used to design the model and to evaluate the performance of actuation cavities in terms of effective deformation and the resulting von-mises stress. Out of the simulated profiles, cylindrical cavity with desired outcomes has been further considered to design the soft actuator. \u2018Ansys Workbench 17.1 R \u2019 environment was further used to assess the performance of cylindrical actuation cavity. Evaluation in two different simulation environments helped to validate the initially achieved results. The developed soft cubic actuator was then employed to develop different mechanisms in a single unit configuration as well as multi-unit robotic system developments. This design scheme is considered as the first tool to investigate its capacity to perform certain given tasks in various configurations. Alongside its application as a single unit gripper and a two unit bio-mimetic crawling mechanism, this soft actuator has been employed to realize a four degree ix of freedom robotic mechanism. The formation of this primitive soft robotic four axis mechanism is being further considered to develop an equivalent mechanism similar to the well known Stewart platform, with advantages of compactness, simpler kinematics design, easier control, and lesser cost. Overall, the accomplished results indicate that the design scheme of Soft Cubic Module is helpful in realizing a simple and cost-effective soft pneumatic actuator which is modular and scalable. Another favourable point of this scheme is the use of a single material with convenient fabrication and handling
    • 

    corecore