1,021 research outputs found

    A New Fractal-Based Design of Stacked Integrated Transformers

    Get PDF
    Silicon-based radio-frequency integrated circuits are becoming more and more competitive in wide-band frequency range. An essential component of these ICs is on-chip (integrated) transformer. It is widely used in mobile communications, microwave integrated circuits, low-noise amplifiers, active mixers, and baluns. This paper deals with the design, simulation, and analysis of novel fractal configurations of the primary and secondary coils of the integrated transformers. Integrated stacked transformers, which use fractal curves (Hilbert, Peano, and von Koch) to form the primary and secondary windings, are presented. In this way, the occupied area on the chip is lower and a number of lithographic processes are decreased. The performances of the proposed integrated transformers are investigated with electromagnetic simulations up to 20ā€‰GHz. The influence of the order of fractal curves and the width of conductive lines on the inductance and quality factor is also described

    MIDAS: Automated Approach to Design Microwave Integrated Inductors and Transformers on Silicon

    Get PDF
    The design of modern radiofrequency integrated circuits on silicon operating at microwave and millimeter-waves requires the integration of several spiral inductors and transformers that are not commonly available in the process design-kits of the technologies. In this work we present an auxiliary CAD tool for Microwave Inductor (and transformer) Design Automation on Silicon (MIDAS) that exploits commercial simulators and allows the implementation of an automatic design flow, including three-dimensional layout editing and electromagnetic simulations. In detail, MIDAS allows the designer to derive a preliminary sizing of the inductor (transformer) on the bases of the design entries (specifications). It draws the inductor (transformer) layers for the specific process design kit, including vias and underpasses, with or without patterned ground shield, and launches the electromagnetic simulations, achieving effective design automation with respect to the traditional design flow for RFICs. With the present software suite the complete design time is reduced significantly (typically 1 hour on a PC based on IntelĀ® PentiumĀ® Dual 1.80GHz CPU with 2-GB RAM). Afterwards both the device equivalent circuit and the layout are ready to be imported in the Cadence environment

    The Performance of an Integrated Transformer in a DC/DC Converter

    Get PDF
    The separation between the low-voltage part and high-voltage part of the converter is formed by a transformer that transfers power while jamming the DC ring. The resonant mode power oscillator is utilized to allow elevated competence power transfer. The on-chip transformer is probable to have elevated value inductance, elevated quality factors and elevated coupling coefficient to decrease the loss in the oscillation. The performance of a transformer is extremely dependent on the structure, topology and other essential structures that create it compatible with the integrated circuits IC process such as patterned ground shield (PGS). Different types of transformers are modeled and simulated in MATLAB; the performances are compared to select the optimum design. The on-chip transformer model is simulated and the Results of MATLAB simulation are exposed, showing an excellent agreement in radio frequency RF

    Distributed active transformer - a new power-combining andimpedance-transformation technique

    Get PDF
    In this paper, we compare the performance of the newly introduced distributed active transformer (DAT) structure to that of conventional on-chip impedance-transformations methods. Their fundamental power-efficiency limitations in the design of high-power fully integrated amplifiers in standard silicon process technologies are analyzed. The DAT is demonstrated to be an efficient impedance-transformation and power-combining method, which combines several low-voltage push-pull amplifiers in series by magnetic coupling. To demonstrate the validity of the new concept, a 2.4-GHz 1.9-W 2-V fully integrated power-amplifier achieving a power-added efficiency of 41% with 50-Ī© input and output matching has been fabricated using 0.35-Ī¼m CMOS transistor

    Design and Modeling of an Integrated Micro-Transformer in a Flyback Converter

    Get PDF
    This paper presents the design and modeling of a square micro-transformer for its integration in a flyback converter. From the specifications of the switching power supply, we determined the geometric parameters of this micro-transformer. The Ļ€-electrical model of this micro-transformer highlights all parasitic effects generated by stacking of different material layers and permits to calculate the technological parameters by using the S-parameters. A good dimensioning of the geometrical parameters reduces efficiently the energy losses in the micro-transformer and permits to reach the desirable value of the converter output voltage. We have also simulated the electromagnetic effects with the help of the software FEMLAB3.1 in two cases. The first case, without ferromagnetic core, the second case with ferromagnetic core, in order to choose the micro-transformer that has better electromagnetic compatibility with the vicinity components. To validate dimensioning of the geometrical and technological parameters, we have simulated with the help of the software PSIM6.0, the equivalent electrical circuit of the converter containing the electrical circuit of the dimensioned planar micro-transformer

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135Ā° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%

    Modeling and Structure Optimization of Tapped Transformer

    Get PDF
    In this paper, a simplified circuit model of the tapped transformer structure has been presented to extract the Geometric and technology parameters and offer better physical understanding. Moreover, the structure of planar transformer has been optimized by using changing the width and space of the primary coil, so as to enlarge the quality factor Q and high coupling coefficient K. To verify the results obtained by using these models, we have compared them with the results obtained by employing the MATLAB simulator. Very good agreement has been recorded for the effective primary inductance value, whereas the effective primary quality factor value has shown a somewhat larger deviation than the inductance
    • ā€¦
    corecore