1,740 research outputs found

    Estimation of Carbon Coatings Manufactured on Magnesium Alloys

    Get PDF

    Advances in CAD/CAM/CAE Technologies

    Get PDF
    CAD/CAM/CAE technologies find more and more applications in today’s industries, e.g., in the automotive, aerospace, and naval sectors. These technologies increase the productivity of engineers and researchers to a great extent, while at the same time allowing their research activities to achieve higher levels of performance. A number of difficult-to-perform design and manufacturing processes can be simulated using more methodologies available, i.e., experimental work combined with statistical tools (regression analysis, analysis of variance, Taguchi methodology, deep learning), finite element analysis applied early enough at the design cycle, CAD-based tools for design optimizations, CAM-based tools for machining optimizations

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Modeling that Leads to the Prediction of Photocatalytic Coatings Characterization

    Get PDF
    One of the abundant sources of energy on earth is a solar energy which is the clean and safest energy source. It is also known as universal energy, the most important source of renewable energy available today. On realizing that the light source has a crucial role in daily life, several scientists and researchers from centuries ago have studied to establish photo induced systems and utilized them. Long after the knowledge of thermal energy, photovoltaic energy, and photosynthesis in plants, two prominent scientists, Fujishima and Honda, have discovered the electrochemical photolysis of water with the Titanium dioxide electrode which was reported in Nature by Analogy with a natural photosynthesis in 1972 [21]. This discovery leads to the development of heterogeneous photocatalysis in various applications including air and water purification treatment and organic synthesis. Since then it has drawn the wide scientific interest of many academicians and commercial industries. Over the past few decades, the extensive study focused on photocatalysis. Titanium dioxide photocatalysis has been promoted as a leading and emerging green technology for air and water purification systems because of its versatile nature being non-toxic environment friendly, stability to photocorrosion, low cost and potential to function under solar light better than any other artificial light source. It can be exploited for both harvesting solar energy and the destruction of organic and inorganic pollutants, even micro-organisms, in water and air by solar light irradiation. Recently several researches have been focused on improving the operating efficiency of the photocatalytic process on both the mechanistic aspects and other operating parametric aspects including catalyst concentration load, irradiation time, relative humidity, reaction temperature and many more; however, rate limiting properties still remain elusive. Many issues hindering its application on large scale production still exists. Several chemists and materials scientists focused mainly on the synthesis of more efficient materials and the investigation of degradation mechanism while engineers and computational scientists focused mainly on the development of appropriate models both mathematical and statistical, graphical representations to evaluate the intrinsic kinetics parameters and to build the prediction models that allow the scale up or re-design of efficient large-scale photocatalytic reactors. The number of raw data points and raw data files collected by sensors during several experiments grows rapidly over a time. With a large number of raw data sets, a tool to handle such a large raw data set is a practical necessity both for visualization and data analysis along with the computing power. With an aim to build the prediction model of the photocatalytic characterization, scientific computing tools NumPy, SciPy, Pandas, and Matplotlib based on the python programming language are used. For graphical analysis and statistical significance, a custom tool was built using the wxPython package

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    NASA Tech Briefs, September 1990

    Get PDF
    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Index to NASA tech briefs, 1971

    Get PDF
    The entries are listed by category, subject, author, originating source, source number/Tech Brief number, and Tech Brief number/source number. There are 528 entries

    Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensin

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity
    • …
    corecore