2,888 research outputs found

    Explorations in engagement for humans and robots

    Get PDF
    This paper explores the concept of engagement, the process by which individuals in an interaction start, maintain and end their perceived connection to one another. The paper reports on one aspect of engagement among human interactors--the effect of tracking faces during an interaction. It also describes the architecture of a robot that can participate in conversational, collaborative interactions with engagement gestures. Finally, the paper reports on findings of experiments with human participants who interacted with a robot when it either performed or did not perform engagement gestures. Results of the human-robot studies indicate that people become engaged with robots: they direct their attention to the robot more often in interactions where engagement gestures are present, and they find interactions more appropriate when engagement gestures are present than when they are not.Comment: 31 pages, 5 figures, 3 table

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Do (and say) as I say: Linguistic adaptation in human-computer dialogs

    Get PDF
    © Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. This article has been made available through the Brunel Open Access Publishing Fund.There is strong research evidence showing that people naturally align to each other’s vocabulary, sentence structure, and acoustic features in dialog, yet little is known about how the alignment mechanism operates in the interaction between users and computer systems let alone how it may be exploited to improve the efficiency of the interaction. This article provides an account of lexical alignment in human–computer dialogs, based on empirical data collected in a simulated human–computer interaction scenario. The results indicate that alignment is present, resulting in the gradual reduction and stabilization of the vocabulary-in-use, and that it is also reciprocal. Further, the results suggest that when system and user errors occur, the development of alignment is temporarily disrupted and users tend to introduce novel words to the dialog. The results also indicate that alignment in human–computer interaction may have a strong strategic component and is used as a resource to compensate for less optimal (visually impoverished) interaction conditions. Moreover, lower alignment is associated with less successful interaction, as measured by user perceptions. The article distills the results of the study into design recommendations for human–computer dialog systems and uses them to outline a model of dialog management that supports and exploits alignment through mechanisms for in-use adaptation of the system’s grammar and lexicon

    Towards automatic estimation of conversation floors within F-formations

    Full text link
    The detection of free-standing conversing groups has received significant attention in recent years. In the absence of a formal definition, most studies operationalize the notion of a conversation group either through a spatial or a temporal lens. Spatially, the most commonly used representation is the F-formation, defined by social scientists as the configuration in which people arrange themselves to sustain an interaction. However, the use of this representation is often accompanied with the simplifying assumption that a single conversation occurs within an F-formation. Temporally, various categories have been used to organize conversational units; these include, among others, turn, topic, and floor. Some of these concepts are hard to define objectively by themselves. The present work constitutes an initial exploration into unifying these perspectives by primarily posing the question: can we use the observation of simultaneous speaker turns to infer whether multiple conversation floors exist within an F-formation? We motivate a metric for the existence of distinct conversation floors based on simultaneous speaker turns, and provide an analysis using this metric to characterize conversations across F-formations of varying cardinality. We contribute two key findings: firstly, at the average speaking turn duration of about two seconds for humans, there is evidence for the existence of multiple floors within an F-formation; and secondly, an increase in the cardinality of an F-formation correlates with a decrease in duration of simultaneous speaking turns.Comment: 8th International Conference on Affective Computing & Intelligent Interaction EMERGent Workshop, 7 pages, 4 Figures, 2 Table
    • 

    corecore