451 research outputs found

    On the modeling of WCDMA system performance with propagation data

    Get PDF
    The aim of this study was to develop calculation methods for estimating the most important system level performance characteristics of the WCDMA radio network (i.e. network capacity and coverage) in the presence of interference from various sources. The calculation methods described in this work enable the fast design of radio systems with a reasonable degree of accuracy, where different system parameters, propagation conditions and networks as well as frequency scenarios can be easily tested. The work also includes the development and verification of a propagation model for a microcellular environment. Traditionally, system level performance figures have been retrieved using system simulations where the radio network has been modeled as accurately as possible. This has included base stations and mobile stations, propagation models, traffic models and mobility models. Various radio resource management (RRM) algorithms, such as power controls and handovers have also been modeled. However, these system simulations are very complex and time consuming and typically the models are difficult to modify. The idea behind this work is to use the main statistical parameters retrieved from accurate, case specific propagation models and to use these statistics as input for the developed analytical radio network models. When used as output from these analytical models we are able to obtain the performance measures of the network. The specific application area for the developed methods is the evaluation of the effect of the interference from the adjacent frequency channels. Adjacent channel interference decreases the efficiency of the usage of the electromagnetic spectrum i.e. the spectral efficiency. The aim of a radio system design is to ensure that the reduction in the spectral efficiency is as low as possible. This interference may originate from the same or a different radio system and from the same or another operator's network. The strength of this interference is dependent on the system parameters and the network layout. The standard questions regarding adjacent system interference between different operators' network are what guard band is needed between the radio carriers in order to maintain the quality of the network or what are the main mobile and network parameters, such as adjacent channel emission levels or adjacent channel selectivity, required in order to achieve satisfactory network performance. With the developed method proposed here it is possible to answer these questions with reasonable accuracy. One important aspect of network performance is the radio wave propagation environment for which the radio systems are designed. This thesis presents methods evaluating radio wave propagation, especially for cases where the base station antenna is below the rooftops, i.e. in the case of microcellular network environments. The developed microcellular propagation model has been developed for network planning purposes and it has been verified using numerous field propagation measurements. The model can be used in cases where the mobile station is located either indoors or outdoors.reviewe

    CMOS Power Amplifiers for Multi-Hop Communication Systems

    Get PDF

    MODELS FOR GREENFIELD AND INCREMENTAL CELLULAR NETWORK PLANNING

    Get PDF
    Mobility, as provided in cellular networks, is largely affected by the location of the base stations. To a large extent, the location of base stations is determined by the quantity of base stations available to provide coverage. It is therefore not surprising that the quantity and subsequent location of base stations will not only impact service delivery but also have a large associated cost for implementation. Generally, the higher the quantity of base stations required to provide coverage, the greater the cost of implementation and operation of the radio network. This thesis proposes a modified optimization model to aid the cell planning process. This model, unlike those surveyed, is applicable to both green field and incremental network designs. The variation in model design is fundamental in ensuring cost effective growth and expansion of cellular networks. Numerical studies of the modified model applied to both abstract and real system configurations are carried out using MATLAB. Terrain data from Kampala, Uganda, was used to aid the study. Results show that the antenna height significantly determines the solution of the objective function. In addition, it is shown that slight variations in the cost association between the antenna height and the site construction requirements can be decisively used for predefined targeted network planning. A comparison is also made between an actual network installation and the estimates provided by the model. As expected, results from the study show that the difference between the estimated count and the actual count can be adEquately minimized by slight variations in antenna height requirements

    Multi-Cell Uplink Radio Resource Management. A LTE Case Study

    Get PDF

    Techniques for Efficient Spectrum Usage for Next Generation Mobile Communication Networks. An LTE and LTE-A Case Study

    Get PDF

    A novel approach to emergency management of wireless telecommunication system

    Get PDF
    The survivability concerns the service continuity when the components of a system are damaged. This concept is especially useful in the emergency management of the system, as often emergencies involve accidents or incident disasters which more or less damage the system. The overall objective of this thesis study is to develop a quantitative management approach to the emergency management of a wireless cellular telecommunication system in light of its service continuity in emergency situations – namely the survivability of the system. A particular wireless cellular telecommunication system, WCDMA, is taken as an example to ground this research.The thesis proposes an ontology-based paradigm for service management such that the management system contains three models: (1) the work domain model, (2) the dynamic model, and (3) the reconfiguration model. A powerful work domain modeling tool called Function-Behavior-Structure (FBS) is employed for developing the work domain model of the WCDMA system. Petri-Net theory, as well as its formalization, is applied to develop the dynamic model of the WCDMA system. A concept in engineering design called the general and specific function concept is applied to develop a new approach to system reconfiguration for the high survivability of the system. These models are implemented along with a user-interface which can be used by emergency management personnel. A demonstration of the effectiveness of this study approach is included.There are a couple of contributions with this thesis study. First, the proposed approach can be added to contemporary telecommunication management systems. Second, the Petri Net model of the WCDMA system is more comprehensive than any dynamic model of the telecommunication systems in literature. Furthermore, this model can be extended to any other telecommunication system. Third, the proposed system reconfiguration approach, based on the general and specific function concept, offers a unique way for the survivability of any service provider system.In conclusion, the ontology-based paradigm for a service system management provides a total solution to service continuity as well as its emergency management. This paradigm makes the complex mathematical modeling of the system transparent to the manager or managerial personnel and provides a feasible scenario of the human-in-the-loop management

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF

    Studies on 6-sector-site deployment in downlink LTE

    Get PDF
    Mobile data traffic is expected to increase massively in the following years. Consequently, service operators are induced to increase the capacity of their networks continually to attract more subscribers and maximize their revenues. At the same time, they want to minimize operational costs and capital expenditures. Among the alternatives that aim to increase the network capacity, higher order sectorization, and in particular a six sectorized configuration, is nowadays attracting a lot of attention for LTE macro-cell deployments since a higher number of sectors per site results in improved site capacity and coverage. A six sectorized configuration is attractive for both roll-out phase and growth phase of the network. In the roll-out phase, the radio access network is planned with 6-sector sites instead of 3-sector sites with the advantage that less sites are needed for the same capacity and coverage requirements. In the growth phase, the six sectorized configuration can be used to upgrade existing 3-sector sites where the traffic grows beyond the current sites' capabilities. Therefore, no additional expensive and time consuming contracts need to be signed for the locations of the new sites, while the existing sites are used more efficiently. However, although potentially a 6-sector site can offer a double capacity than a 3-sector site, several factors prevent the capacity from growing proportionately to the number of sectors. Consequently, there is an uncertainty on whether the capacity gain is high enough to justify the extra costs of the additional equipment and, more specifically, whether the 6-sector-site deployment is more economically attractive than a 3-sector-site deployment. The aim of this report is to solve this uncertainty. First, we present the main factors that affect the capacity gain. Next, we quantify the impact of these factors on the capacity gain in downlink LTE with the use of a system level simulator. Finally, we use the results of the simulation study as inputs for an economic study to access the reasons for a possible deployment of 6-sector sites instead of 3-sector sites for LTE
    • …
    corecore