168 research outputs found

    Energy Efficient Evolution of Mobile Broadband Networks

    Get PDF

    On the energy efficiency of NOMA for wireless backhaul in multi-tier heterogeneous CRAN

    Get PDF
    This paper addresses the problem of wireless backhaul in a multi-tier heterogeneous cellular network coordinated by a cloud-based central station (CCS), namely heterogeneous cloud radio access network (HCRAN). A non-orthogonal multiple access (NOMA) is adopted in the power domain for improved spectral efficiency and network throughput of the wireless downlink in the HCRAN. We first develop a power allocation for multiple cells of different tiers taking account of the practical power consumption of different cell types and wireless backhaul. By analysing the energy efficiency (EE) of the NOMA for the practical HCRAN downlink, we show that the power available at the cloud, the propagation environment and cell types have significant impacts on the EE performance. In particular, in a large network, the cells located at the cloud edge are shown to suffer from a very poor performance with a considerably degraded EE, which accordingly motivates us to propose an iteration algorithm for determining the maximal number of cells that can be supported in the HCRAN. The results reveal that a double number of cells can be covered in the urban environment compared to those in the shadowed urban environment and more than 1.5 times of the number of microcells can be deployed over the macrocells, while only a half number of cells can be supported when the distance between them increases threefol

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    On the energy efficiency of NOMA for wireless backhaul in multi-tier heterogeneous CRAN

    Get PDF
    This paper addresses the problem of wireless backhaul in a multi-tier heterogeneous cellular network coordinated by a cloud-based central station (CCS), namely heterogeneous cloud radio access network (HCRAN). A non-orthogonal multiple access (NOMA) is adopted in the power domain for improved spectral efficiency and network throughput of the wireless downlink in the HCRAN. We first develop a power allocation for multiple cells of different tiers taking account of the practical power consumption of different cell types and wireless backhaul. By analysing the energy efficiency (EE) of the NOMA for the practical HCRAN downlink, we show that the power available at the cloud, the propagation environment and cell types have significant impacts on the EE performance. In particular, in a large network, the cells located at the cloud edge are shown to suffer from a very poor performance with a considerably degraded EE, which accordingly motivates us to propose an iteration algorithm for determining the maximal number of cells that can be supported in the HCRAN. The results reveal that a double number of cells can be covered in the urban environment compared to those in the shadowed urban environment and more than 1.5 times of the number of microcells can be deployed over the macrocells, while only a half number of cells can be supported when the distance between them increases threefol

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    • …
    corecore