30,523 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Implementation of connected and autonomous vehicles in cities could have neutral effects on the total travel time costs: modeling and analysis for a circular city

    Get PDF
    Autonomous vehicles promise to revolutionize the automobile market, although their implementation could take several decades in which both types of cars will coexist on the streets. We formulate a model for a circular city based on continuous approximations, considering demand surfaces over the city. Numerical results from our model predict direct and indirect effects of connected and autonomous vehicles. Direct effects will be positive for our cities: (a) less street supply is needed to accommodate the traffic; (b) congestion levels decrease: travel costs may decrease by 30%. Some indirect effects will counterbalance these positive effects: (c) a decrease of 20% in the value of travel time can reduce the total cost by a third; (d) induced demand could be as high as 50%, bringing equivalent total costs in the future scenario; (e) the vehicle-kilometers traveled could also affect the future scenario; and (f) increases in city size and urban sprawl. As a conclusion, the implementation of autonomous vehicles could be neutral for the cities regarding travel time costs. City planning agencies still have to promote complementary modes such as active mobility (walking and bicycle), transit (public transportation), and shared mobility (shared autonomous vehicles and mobility as a service).Peer ReviewedPostprint (published version

    Estimating confidence intervals for transport Mode share.

    Get PDF
    One of the common statistics used to monitor transport activity is the total travel by a particular method or mode and, for each mode, this share is routinely expressed as a percentage of total personal travel. This article describes a simple model to estimate a confidence interval around this percentage using Monte Carlo simulation. The model takes into account the impact of both measurement errors in counting traffic and daily variations in traffic levels. These confidence intervals can then be used to test reliably for significant changes in mode share. The model can also be used in sensitivity analysis to investigate how sensitive the width of this interval is to changes in the size of the measurement errors and daily fluctuations. A bootstrap technique is then used to validate the Monte Carlo estimated confidence interval

    A Review of the Travel Behavior Analysis: Its Basis and Application for Developing Cities

    Full text link
    Travel, most often viewed in theory as derived from the demand for activity participation, has almost always been modeled on the trip-based basis, i.e., the trip is treated as the unit of analysis. Attributes of a trip (e.g., its origin and destination, mode, length) have been the subjects of analysis, but not the types of activities engaged in, their durations, sequences, and timing. This paper offers a brief review of the travel behavior analysis in order to provide a better understanding and forecasting of travel behavior. The article further offers discussions on its possible applications in urban areas of developing countries where historical accumulations of transportation and communications technologies are being introduced within a short span of time, creating the environment for travel which may not be properly accounted for using the conventional trip-based models of travel demand. In addition, the dataset from Malaysia was employed as a case of study

    Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data

    Full text link
    Accurately modeling traffic speeds is a fundamental part of efficient intelligent transportation systems. Nowadays, with the widespread deployment of GPS-enabled devices, it has become possible to crowdsource the collection of speed information to road users (e.g. through mobile applications or dedicated in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced speed data also brings very important challenges, such as the highly variable measurement noise in the data due to a variety of driving behaviors and sample sizes. When not properly accounted for, this noise can severely compromise any application that relies on accurate traffic data. In this article, we propose the use of heteroscedastic Gaussian processes (HGP) to model the time-varying uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a HGP conditioned on sample size and traffic regime (SRC-HGP), which makes use of sample size information (probe vehicles per minute) as well as previous observed speeds, in order to more accurately model the uncertainty in observed speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we empirically show that the proposed heteroscedastic models produce significantly better predictive distributions when compared to current state-of-the-art methods for both speed imputation and short-term forecasting tasks.Comment: 22 pages, Transportation Research Part C: Emerging Technologies (Elsevier
    • …
    corecore