7,094 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Product to process lifecycle management in assembly automation systems

    Get PDF
    Presently, the automotive industry is facing enormous pressure due to global competition and ever changing legislative, economic and customer demands. Product and process development in the automotive manufacturing industry is a challenging task for many reasons. Current product life cycle management (PLM) systems tend to be product-focussed. Though, information about processes and resources are there but mostly linked to the product. Process is an important aspect, especially in assembly automation systems that link products to their manufacturing resources. This paper presents a process-centric approach to improve PLM systems in large-scale manufacturing companies, especially in the powertrain sector of the automotive industry. The idea is to integrate the information related to key engineering chains i.e. products, processes and resources based upon PLM philosophy and shift the trend of product-focussed lifecycle management to process-focussed lifecycle management, the outcome of which is the Product, Process and Resource Lifecycle Management not PLM only

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    A high level e-maintenance architecture to support on-site teams

    Get PDF
    Emergent architectures and paradigms targeting reconfigurable manufacturing systems increasingly rely on intelligent modules to maximize the robustness and responsiveness of modern installations. Although intelligent behaviour significantly minimizes the occurrence of faults and breakdowns it does not exclude them nor can prevent equipment’s normal wear. Adequate maintenance is fundamental to extend equipments’ life cycle. It is of major importance the ability of each intelligent device to take an active role in maintenance support. Further this paradigm shift towards “embedded intelligence”, supported by cross platform technologies, induces relevant organizational and functional changes on local maintenance teams. On the one hand, the possibility of outsourcing maintenance activities, with the warranty of a timely response, through the use of pervasive networking technologies and, on the other hand, the optimization of local maintenance staff are some examples of how IT is changing the scenario in maintenance. The concept of e-maintenance is, in this context, emerging as a new discipline with defined socio-economic challenges. This paper proposes a high level maintenance architecture supporting maintenance teams’ management and offering contextualized operational support. All the functionalities hosted by the architecture are offered to the remaining system as network services. Any intelligent module, implementing the services’ interface, can report diagnostic, prognostic and maintenance recommendations that enable the core of the platform to decide on the best course of action.manufacturing systems, platform technologies, maintenance

    A Rapidly Reconfigurable Robotics Workcell and Its Applictions for Tissue Engineering

    Get PDF
    This article describes the development of a component-based technology robot system that can be rapidly configured to perform a specific manufacturing task. The system is conceived with standard and inter-operable components including actuator modules, rigid link connectors and tools that can be assembled into robots with arbitrary geometry and degrees of freedom. The reconfigurable "plug-and-play" robot kinematic and dynamic modeling algorithms are developed. These algorithms are the basis for the control and simulation of reconfigurable robots. The concept of robot configuration optimization is introduced for the effective use of the rapidly reconfigurable robots. Control and communications of the workcell components are facilitated by a workcell-wide TCP/IP network and device level CAN-bus networks. An object-oriented simulation and visualization software for the reconfigurable robot is developed based on Windows NT. Prototypes of the robot systems configured to perform 3D contour following task and the positioning task are constructed and demonstrated. Applications of such systems for biomedical tissue scaffold fabrication are considered.Singapore-MIT Alliance (SMA

    Service-oriented control architecture for reconfigurable production systems

    Get PDF
    Evolvable and collaborative production systems are becoming an emergent paradigm towards flexibility and automatic re-configurability. The reconfiguration of those systems requires the existence of distributed and modular control components that interact in order to accomplish control activities. This paper focuses on service-oriented production systems, which behavior is regulated by the coordination of services that are provided and required by control components with different roles. Internally, these components are independent of the implementations, but an internal modular and event based structure is presented. Individual control and interaction is achieved by using embedded or inter-service control processes for which High-Level Petri Nets are proposed. Supporting the predefined control, decision support systems are used to provide conflict resolution and other decision-making functions

    A formal semantics for control and data flow in the gannet service-based system-on-chip architecture

    Get PDF
    There is a growing demand for solutions which allow the design of large and complex reconfigurable Systems-on- Chip (SoC) at high abstraction levels. The Gannet project proposes a functional programming approach for high-abstraction design of very large SoCs. Gannet is a distributed service-based SoC architecture, i.e. a network of services offered by hardware or software cores. The Gannet SoC is task-level reconfigurable: it performs tasks by executing functional task description programs using a demand-driven dataflow mechanism. The Gannet architecture combines the flexible connectivity offered by a Networkon- Chip with the functional language paradigm to create a fully concurrent distributed SoC with the option to completely separate data flows from control flows. This feature is essential to avoid a bottleneck at he controller for run-time control of multiple high-throughput data flows. In this paper we present the Gannet architecture and language and introduce an operational semantics to formally describe the mechanism to separate control and data flows
    corecore