96 research outputs found

    Modeling Performance of the Clock Phase Caching Approach to Clock and Data Recovery

    Get PDF
    Optical switching could enable data center networks to keep pace with the rapid growth of intra-data center traffic, however, sub-nanosecond clock and data recovery time is crucial to enabling optically-switched data center networks to transport small packet dominated data center traffic with over 90% efficiency. We review the clock-synchronized approach to clock and data recovery, which enables sub-nanosecond switching time in optically switched networks. We then introduce an analytical model to mathematically explore the operation of clock phase caching, and use this model to explore the impact of factors such as fiber temperature, clock jitter and symbol rate on the BER and clock and data recovery locking time performance clock phase caching approach, as well as their impact on scalability. Using commercial data center parameters matching those used in our previous experimental research, we find that our analytical model provides estimates that closely match our previous experimental results, validating its use for making predictions of the performance of clock phase cached systems

    Delay Flip-Flop (DFF) Metastability Impact on Clock and Data Recovery (CDR) and Phase-Locked Loop (PLL) Circuits

    Get PDF
    Modeling delay flip-flops for binary (e.g., Alexander) phase detectors requires paying close attention to three important timing parameters: setup time, hold time, and clock edge-to-output (or briefly C2Q time). These parameters have a critical role in determining the status of the system on the circuit level. This study provided a guideline for designing an optimum DFF for an Alexander phase detector in a clock and data recovery circuit. Furthermore, it indicated DFF timing requirements for a high-speed phase detector in a clock and data recovery circuit. The CDR was also modeled by Verilog-A, and the results were compared with Simulink model achievements. Eventually designed in 45 nm CMOS technology, for 10 Gbps random sequence, the recovered clock contained 0.136 UI and 0.15 UI peak-to-peak jitter on the falling and rising edges respectively, and the lock time was 125 ns. The overall power dissipation was 21 mW from a 1 V supply voltage. Future work includes layout design and manufacturing of the proposed design

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    Fast jitter tolerance testing for high-speed serial links in post-silicon validation

    Get PDF
    Post-silicon electrical validation of high-speed input/output (HSIO) links is a critical process for product qualification schedules of high-performance computer platforms under current aggressive time-to-market (TTM) commitments. Improvements in signaling methods, circuits, and process technologies have allowed HSIO data rates to scale well beyond 10 Gb/s. Noise and EM effects can create multiple signal integrity problems, which are aggravated by continuously faster bus technologies. The goal of post-silicon validation for HSIO links is to ensure design robustness of both receiver (Rx) and transmitter (Tx) circuitry in real system environments. One of the most common ways to evaluate the performance of a HSIO link is to characterize the Rx jitter tolerance (JTOL) performance by measuring the bit error rate (BER) of the link under worst stressing conditions. However, JTOL testing is extremely time-consuming when executed at specification BER considering manufacturing process, voltage, and temperature (PVT) test coverage. In order to significantly accelerate this process, we propose a novel approach for JTOL testing based on an efficient direct search optimization methodology. Our approach exploits the fast execution of a modified golden section search with a high BER, while overcoming the lack of correlation between different BERs by performing a downward linear search at the actual target BER until no errors are found. Our proposed methodology is validated in a realistic industrial server post-silicon validation platform for three different computer HSIO links: SATA, USB3, and PCIe3.ITESO, A.C

    Clock Synchronisation Assisted Clock and Data Recovery for Sub-Nanosecond Data Centre Optical Switching

    Get PDF
    In current `Cloud' data centres, switching of data between servers is performed using deep hierarchies of interconnected electronic packet switches. Demand for network bandwidth from emerging data centre workloads, combined with the slowing of silicon transistor scaling, is leading to a widening gap between data centre traffic demand and electronically-switched data centre network capacity. All-optical switches could offer a future-proof alternative, with potentially under a third of the power consumption and cost of electronically-switched networks. However, the effective bandwidth of optical switches depends on their overall switching time. This is dominated by the clock and data recovery (CDR) locking time, which takes hundreds of nanoseconds in commercial receivers. Current data centre traffic is dominated by small packets that transmit in tens of nanoseconds, leading to low effective bandwidth, as a high proportion of receiver time is spent performing CDR locking instead of receiving data, removing the benefits of optical switching. High-performance optical switching requires sub-nanosecond CDR locking time to overcome this limitation. This thesis proposes, models, and demonstrates clock synchronisation assisted CDR, which can achieve this. This approach uses clock synchronisation to simplify the complexity of CDR versus previous asynchronous approaches. An analytical model of the technique is first derived that establishes its potential viability. Following this, two approaches to clock synchronisation assisted CDR are investigated: 1. Clock phase caching, which uses clock phase storage and regular updates in a 2km intra-building scale data centre network interconnected by single-mode optical fibre. 2. Single calibration clock synchronisation assisted CDR}, which leverages the 20 times lower thermal sensitivity of hollow core optical fibre versus single-mode fibre to synchronise a 100m cluster scale data centre network, with a single initial phase calibration step. Using a real-time FPGA-based optical switch testbed, sub-nanosecond CDR locking time was demonstrated for both approaches

    Analog Baseband Filters and Mixed Signal Circuits for Broadband Receiver Systems

    Get PDF
    Data transfer rates of communication systems continue to rise fueled by aggressive demand for voice, video and Internet data. Device scaling enabled by modern lithography has paved way for System-on-Chip solutions integrating compute intensive digital signal processing. This trend coupled with demand for low power, battery-operated consumer devices offers extensive research opportunities in analog and mixed-signal designs that enable modern communication systems. The first part of the research deals with broadband wireless receivers. With an objective to gain insight, we quantify the impact of undesired out-band blockers on analog baseband in a broadband radio. We present a systematic evaluation of the dynamic range requirements at the baseband and A/D conversion boundary. A prototype UHF receiver designed using RFCMOS 0.18[mu]m technology to support this research integrates a hybrid continuous- and discrete-time analog baseband along with the RF front-end. The chip consumes 120mW from a 1.8V/2.5V dual supply and achieves a noise figure of 7.9dB, an IIP3 of -8dBm (+2dbm) at maximum gain (at 9dB RF attenuation). High linearity active RC filters are indispensable in wireless radios. A novel feed-forward OTA applicable to active RC filters in analog baseband is presented. Simulation results from the chip prototype designed in RFCMOS 0.18[mu]m technology show an improvement in the out-band linearity performance that translates to increased dynamic range in the presence of strong adjacent blockers. The second part of the research presents an adaptive clock-recovery system suitable for high-speed wireline transceivers. The main objective is to improve the jitter-tracking and jitter-filtering trade-off in serial link clock-recovery applications. A digital state-machine that enables the proposed mixed-signal adaptation solution to achieve this objective is presented. The advantages of the proposed mixed-signal solution operating at 10Gb/s are supported by experimental results from the prototype in RFCMOS 0.18[mu]m technology

    Design of energy-efficient high-speed wireline transceiver

    Get PDF
    Energy efficiency has become the most important performance metric of integrated circuits used in many applications ranging from mobile devices to high-performance processors. The power problem permeates both computing and communication systems alike. Especially in the era of Big Data, continuously growing demand for higher communication bandwidth is driving the need for energy-efficient high-speed I/O serial links. However, the rate at which the energy efficiency of serial links is improving is much slower than the rate at which the required data transfer bandwidth is increasing. This dissertation explores two design approaches for energy-efficient communication systems. The first design approach maximizes the energy efficiency of a transceiver without any performance loss, and as a prototype, a source-synchronous multi-Gb/s transceiver that achieves excellent energy efficiency lower than 0.3pJ/bit is presented. To this end, the proposed transceiver employs aggressive supply voltage scaling, and multiplexed transmitter and receiver synchronized by low-rate multi-phase clocks are adopted to achieve high data rate even at a supply voltage close to the device threshold voltage. Phase spacing errors resulting from device mismatches are corrected using a self-calibration scheme. The proposed phase calibration method uses a single digital delay-locked loop (DLL) for calibrating all the phases, which makes the calibration process insensitive to the supply voltage level. Thanks to this technique, the proposed multi-Gb/s transceiver operates robustly and energy-efficiently at a very low supply voltage. Fabricated in a 65nm CMOS process, the energy efficiency and data rate of the prototype transceiver vary from 0.29pJ/bit to 0.58pJ/bit and 1Gb/s to 6Gb/s, respectively, as the supply voltage is varied from 0.45V to 0.7V. In the second approach, observing that the data traffic in a real system is bursty, a full-rate burst-mode transceiver that achieves rapid on/off operation needed for energy-proportional systems is presented. By injecting input data edges into the oscillator embedded in a classical type-II digital clock and data recovery (CDR) circuit, the proposed receiver achieves instantaneous phase-locking and input jitter filtering simultaneously. In other words, the proposed CDR combines the advantages of conventional feed-forward and feedback architectures to achieve energy-proportional operation. By controlling the number of data edges injected into the oscillator, both the jitter transfer bandwidth and the jitter tolerance corner are accurately controlled. The feedback loop also corrects for any frequency error and helps improve the CDR's immunity to oscillator frequency drift during the power-on and -off states. This also improves the CDR's tolerance to consecutive identical digits present in the input data. Fabricated in a 90nm CMOS process, the prototype receiver instantaneously locks onto the very first data edge and consumes 6.1mW at 2.2Gb/s. Owing to its short power-on time, the overall transceiver's energy efficiency varies only from 5.4pJ/bit to 10.7pJ/bit when the effective data rate is varied from 2.2Gb/s to 0.22Gb/s

    Modelling and performance analysis of multigigabit serial interconnects using real number based analog verification methods

    Get PDF
    The increasing importance of multigigabit transceiver circuits in modern chip design calls for new methods of analyzing and integrating these challenging building blocks. This work presents a design and analysis framework basend on the SystemVerilog real number modeling ansatz. It further extends the simulation possibilities thus obtained by introducing additional higher level numeric modelling and evaluation methods to support multigigabit statistical link budgeting procedures based on the Peak Distortion Algorithm

    Design of clock and data recovery circuits for energy-efficient short-reach optical transceivers

    Get PDF
    Nowadays, the increasing demand for cloud based computing and social media services mandates higher throughput (at least 56 Gb/s per data lane with 400 Gb/s total capacity 1) for short reach optical links (with the reach typically less than 2 km) inside data centres. The immediate consequences are the huge and power hungry data centers. To address these issues the intra-data-center connectivity by means of optical links needs continuous upgrading. In recent years, the trend in the industry has shifted toward the use of more complex modulation formats like PAM4 due to its spectral efficiency over the traditional NRZ. Another advantage is the reduced number of channels count which is more cost-effective considering the required area and the I/O density. However employing PAM4 results in more complex transceivers circuitry due to the presence of multilevel transitions and reduced noise budget. In addition, providing higher speed while accommodating the stringent requirements of higher density and energy efficiency (< 5 pJ/bit), makes the design of the optical links more challenging and requires innovative design techniques both at the system and circuit level. This work presents the design of a Clock and Data Recovery Circuit (CDR) as one of the key building blocks for the transceiver modules used in such fibreoptic links. Capable of working with PAM4 signalling format, the new proposed CDR architecture targets data rates of 50−56 Gb/s while achieving the required energy efficiency (< 5 pJ/bit). At the system level, the design proposes a new PAM4 PD which provides a better trade-off in terms of bandwidth and systematic jitter generation in the CDR. By using a digital loop controller (DLC), the CDR gains considerable area reduction with flexibility to adjust the loop dynamics. At the circuit level it focuses on applying different circuit techniques to mitigate the circuit imperfections. It presents a wideband analog front end (AFE), suitable for a 56 Gb/s, 28-Gbaud PAM-4 signal, by using an 8x interleaved, master/ slave based sample and hold circuit. In addition, the AFE is equipped with a calibration scheme which corrects the errors associated with the sampling channels’ offset voltage and gain mismatches. The presented digital to phase converter (DPC) features a modified phase interpolator (PI), a new quadrature phase corrector (QPC) and multi-phase output with de-skewing capabilities.The DPC (as a standalone block) and the CDR (as the main focus of this work) were fabricated in 65-nm CMOS technology. Based on the measurements, the DPC achieves DNL/INL of 0.7/6 LSB respectively while consuming 40.5 mW power from 1.05 V supply. Although the CDR was not fully operational with the PAM4 input, the results from 25-Gbaud PAM2 (NRZ) test setup were used to estimate the performance. Under this scenario, the 1-UI JTOL bandwidth was measured to be 2 MHz with BER threshold of 10−4. The chip consumes 236 mW of power while operating on 1 − 1.2 V supply range achieving an energyefficiency of 4.27 pJ/bit
    • 

    corecore