14,911 research outputs found

    Saving Energy and Improving Communications using Cooperative Group-based Wireless Sensor Networks

    Full text link
    Wireless Sensor Networks (WSNs) can be used in many real applications (environmental monitoring, habitat monitoring, health, etc.). The energy consumption of each sensor should be as lower as possible, and methods for grouping nodes can improve the network performance. In this work, we show how organizing sensors in cooperative groups can reduce the global energy consumption of the WSN. We will also show that a cooperative group-based network reduces the number of the messages transmitted inside the WSNs, which implieasa reduction of energy consumed by the whole network, and, consequently, an increase of the network lifetime. The simulations will show how the number of groups improves the network performance. © 2011 Springer Science+Business Media, LLC.García Pineda, M.; Sendra Compte, S.; Lloret, J.; Canovas Solbes, A. (2013). Saving Energy and Improving Communications using Cooperative Group-based Wireless Sensor Networks. Telecommunication Systems. 52(4):2489-2502. doi:10.1007/s11235-011-9568-3S24892502524Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Journal of Computer Networks, 38(4), 393–422.Garcia, M., Bri, D., Sendra, S., & Lloret, J. (2010). Practical deployments of wireless sensor networks: a survey. Journal on Advances in Networks and Services, 3(1&2), 1–16.Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensors, 9(11), 8722–8747.Mainwaring, A., Polastre, J., Szewczyk, R., & Culler, D. (2002). Wireless sensor networks for habitat monitoring. In ACM workshop on sensor networks and applications (WSNA’02), Atlanta, GA, USA, September.Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2010, in press). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, pp. 1–9. doi: 10.1049/iet-com.2010.0654 .Sinha, A., & Chandrakasan, A. (2001). Dynamic power management in wireless sensor networks. IEEE Design & Test of Computers, 18(2), 62–74.Garcia, M., Coll, H., Bri, D., & Lloret, J. (2008). Using MANET protocols in wireless sensor and actor networks. In The second international conference on sensor technologies and applications (SENSORCOMM 2008), Cap Esterel, Costa Azul, France, 25–31 August.Lloret, J., García, M., Boronat, F., & Tomás, J. (2008). MANET protocols performance in group-based networks. In Wireless and mobile networking: Vol. 284 (Chap. 13, pp. 161–172). Berlin, Heidelberg, Boston: Springer.Lloret, J., García, M., & Tomás, J. (2008). Improving mobile and ad-hoc networks performance using group-based topologies. In Wireless sensor and actor networks 2008 (WSAN 2008), Ottawa, Canada, 14–15 July. Berlin, Heidelberg, New York: Springer.Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Journal of Computer Communications, 31(14), 3438–3450.Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: a group-based protocol for large wireless ad hoc and sensor networks. Journal of Computer Science and Technology, 23(3), 461–480.Lloret, J., García, M., Boronat, F., & Tomás, J. (2008). MANET protocols performance in group-based networks. In 10th IFIP international conference on mobile and wireless communications networks (MWCN 2008), Toulouse, France, 30 September–2 October.Garcia, M., Sendra, S., Lloret, J., & Lacuesta, R. (2010). Saving energy with cooperative group-based wireless sensor networks. In LNCS: Vol. 6240. Cooperative design, visualization, and engineering: CDVE 2010 (pp. 231–238), September. Berlin: Springer.Lloret, J., Sendra, S., Coll, H., & García, M. (2010). Saving energy in wireless local area sensor networks. Computer Journal, 53(10), 1658–1673.Meiyappan, S. S., Frederiks, G., & Hahn, S. (2006). Dynamic power save techniques for next generation WLAN systems. In Proceedings of the 38th southeastern symposium on system theory (SSST), Cookeville, Tennessee, USA, 5–7 March.Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. (2002). Energy aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.Min, R., Bhardwaj, M., Cho, S.-H., Shih, E., Sinha, A., Wang, A., & Chandrakasan, A. (2001). Low power wireless sensor networks. In Proceedings of international conference on VLSI design, India, Bangalore, 3–7 January.Salhieh, A., Weinmann, J., Kochha, M., & Schwiebert, L. (2001). Power efficient topologies for wireless sensor networks. In Proceedings of the IEEE international conference on parallel processing (pp. 156–163), 3–7 September.Jayashree, S., Manoj, B. S., & Murthy, C. S. R. (2004). A battery aware medium access control (BAMAC) protocol for Ad-hoc wireless network. In Proceedings of the 15th IEEE international symposium on personal, indoor and mobile radio communications (PIMRC 2004), Barcelona, Spain, 5–8 September (Vol. 2, pp. 995–999).Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings IEEE INFOCOM 2002, the 21st annual joint conference of the IEEE computer and communications societies, New York, USA, 23–27 June.Ching, C., & Schindelhauer, C. (2010). Utilizing detours for energy conservation in mobile wireless networks. Journal of Telecommunication Systems. doi: 10.1007/s11235-009-9188-3 .Gao, Q., Blow, K., Holding, D., Marshall, I., & Peng, X. (2004). Radio range adjustment for energy efficient wireless sensor networks. Journal of Ad Hoc Networks, 4(1), 75–82.Li, D., Jia, X., & Liu, H. (2004). Energy efficient broadcast routing in static ad hoc wireless networks. IEEE Transactions on Mobile Computing, 3(1), 1–8.Camilo, T., Carreto, C., Silva, J., & Boavida, F. (2006). An energy-efficient ant-based routing algorithm for wireless sensor networks. In Lecture notes in computer science: Vol. 4150. Ant colony optimization and swarm intelligence (pp. 49–59). Berlin: Springer.Younis, M., Youssef, M., & Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In Proceedings of the 10th IEEE international symposium on modeling, analysis, and simulation of computer and telecommunications systems (MASCOTS ’02) (pp. 129–136). Washington: IEEE Computer Society.Cheng, Z., Perillo, M., & Heinzelman, W. B. (2008). General network lifetime and cost models for evaluating sensor network deployment strategies. IEEE Transactions on Mobile Computing, 7(4), 484–497.Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man and Cybernetics Part A Systems and Humans, 35(1), 78–92.Vlajic, N., & Xia, D. (2006). Wireless sensor networks: to cluster or not to cluster? In International symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2006.Garcia, M., & Lloret, J. (2009). A cooperative group-based sensor network for environmental monitoring. In LNCS: Vol. 5738. Cooperative design, visualization, and engineering: CDVE 2009. (pp. 276–279). Berlin: Springer.Garcia, M., Bri, D., Boronat, F., & Lloret, J. (2008). A new neighbour selection strategy for group-based wireless sensor networks. In 4th int. conf. on networking and services, ICNS 2008. 16–21 March (pp. 109–114).Kaplan, E. D. (1996). Understanding GPS: principles and applications. Boston: Artech House.Stojmenovic, I. (2002). Position based routing in ad hoc networks. IEEE Communications Magazine, 40(7), 128–134.Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.Bhardwaj, M., Garnett, T., & Chandrakasan, A. P. (2001). Upper bounds on the lifetime of sensor networks. In: International conference on communications (ICC’01). June 2001 (pp. 785–790).Gibbons, A. (1985). Algorithmic graph theory. Cambridge: Cambridge University Press.Fraigniaud, P., Pelc, A., Peleg, D., & Perennes, S. (2000). Assigning labels in unknown anonymous networks. In Proceedings of the 19th annual ACM SIGACT-SIGOPS symposium on principles of distributed computing, Portland, OR, USA (Vol. 1, pp. 101–111).OPNET Modeler® Wireless Suite network simulator (2011). Available at http://www.opnet.com/solutions/network_rd/modeler_wireless.html

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance
    • …
    corecore