1,311 research outputs found

    Modeling Hidden Nodes Collisions in Wireless Sensor Networks: Analysis Approach

    Full text link
    This paper studied both types of collisions. In this paper, we show that advocated solutions for coping with hidden node collisions are unsuitable for sensor networks. We model both types of collisions and derive closed-form formula giving the probability of hidden and visible node collisions. To reduce these collisions, we propose two solutions. The first one based on tuning the carrier sense threshold saves a substantial amount of collisions by reducing the number of hidden nodes. The second one based on adjusting the contention window size is complementary to the first one. It reduces the probability of overlapping transmissions, which reduces both collisions due to hidden and visible nodes. We validate and evaluate the performance of these solutions through simulations

    A REVIEW OF MULTIHOP BASED MEDIUM ACCESS CONTROL (MAC) PROTOCOL TO TACKLE BOTH MULTIPLE ACCESS AND MULTIHOP ISSUES IN WIRELESS MESH NETWORK (WMN)

    Get PDF
    Multihop WMN plays an important role in the next-generation wireless communication. It promised a solution to provide ubiquitous wireless access at low cost and with architecture that easy to be deployed and maintained. A big challenge in designing WMN is to utilize the shared medium, the wireless communication channel, effectively. MAC protocol, the shared medium access controller, therefore plays a critical role in the channel utilization. The better the channel is utilized in WMN, the better is the performance of the WMN. One of the techniques to improve channel utilization is by enabling the concurrent transmission and providing an efficient forwarding operation. However, the existing IEEE 802.11 MAC does not supports those operations in WMN thus degrades the throughput significantly. To date, various multihop based MAC protocols was developed and proposed by researchers with the aim to regulate and solve access issues among all radio nodes in the network. This article presents an exhaustive survey of multihop based contention MAC protocols that proposed to solve exposed node and forwarding issues in multihop WMN. Besides that, the comparison, their operations, advantages and disadvantages of all identified MAC protocols also will be explained and presented in this article

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    TCP Sintok: Transmission control protocol with delay-based loss detection and contention avoidance mechanisms for mobile ad hoc networks

    Get PDF
    Mobile Ad hoc Network (MANET) consists of mobile devices that are connected to each other using a wireless channel, forming a temporary network without the aid of fixed infrastructure; in which hosts are free to move randomly as well as free to join or leave. This decentralized nature of MANET comes with new challenges that violate the design concepts of Transmission Control Protocol (TCP); the current dominant protocol of the Internet. TCP always infers packet loss as an indicator of network congestion and causes it to perform a sharp reduction to its sending rate. MANET suffers from several types of packet losses due to its mobility feature and contention on wireless channel access and these would lead to poor TCP performance. This experimental study investigates mobility and contention issues by proposing a protocol named TCP Sintok. This protocol comprises two mechanisms: Delay-based Loss Detection Mechanism (LDM), and Contention Avoidance Mechanism (CAM). LDM was introduced to determine the cause of the packet loss by monitoring the trend of end-to-end delay samples. CAM was developed to adapt the sending rate (congestion window) according to the current network condition. A series of experimental studies were conducted to validate the effectiveness of TCP Sintok in identifying the cause of packet loss and adapting the sending rate appropriately. Two variants of TCP protocol known as TCP NewReno and ADTCP were chosen to evaluate the performance of TCP Sintok through simulation. The results demonstrate that TCP Sintok improves jitter, delay and throughput as compared to the two variants. The findings have significant implication in providing reliable data transfer within MANET and supporting its deployment on mobile device communication

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201
    • …
    corecore