810 research outputs found

    Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex

    Get PDF
    Aging or cerebral diseases may induce architectural modifications in human brain microvascular networks, such as capillary rarefaction. Such modifications limit blood and oxygen supply to the cortex, possibly resulting in energy failure and neuronal death. Modelling is key in understanding how these architectural modifications affect blood flow and mass transfers in such complex networks. However, the huge number of vessels in the human brain—tens of billions—prevents any modelling approach with an explicit architectural representation down to the scale of the capillaries. Here, we introduce a hybrid approach to model blood flow at larger scale in the brain microcirculation, based on its multiscale architecture. The capillary bed, which is a space-filling network, is treated as a porous medium and modelled using a homogenized continuum approach. The larger arteriolar and venular trees, which cannot be homogenized because of their fractal-like nature, are treated as a network of interconnected tubes with a detailed representation of their spatial organization. The main contribution of this work is to devise a proper coupling model at the interface between these two components. This model is based on analytical approximations of the pressure field that capture the strong pressure gradients building up in the capillaries connected to arterioles or venules. We evaluate the accuracy of this model for both very simple architectures with one arteriole and/or one venule and for more complex ones, with anatomically realistic tree-like vessels displaying a large number of coupling sites. We show that the hybrid model is very accurate in describing blood flow at large scales and further yields a significant computational gain by comparison with a classical network approach. It is therefore an important step towards large scale simulations of cerebral blood flow and lays the groundwork for introducing additional levels of complexity in the future

    Hemodynamics

    Get PDF
    Hemodynamics is study of the mechanical and physiologic properties controlling blood pressure and flow through the body. The factors influencing hemodynamics are complex and extensive. In addition to systemic hemodynamic alterations, microvascular alterations are frequently observed in critically ill patients. The book "Hemodynamics: New Diagnostic and Therapeuric Approaches" is formed to present the up-to-date research under the scope of hemodynamics by scientists from different backgrounds

    Modélisation de l'écoulement sanguin et du transport de molécules dans la microcirculation sanguine cérébrale : impact des occlusions capillaires dans la maladie d'Alzheimer

    Get PDF
    Le système microvasculaire est un acteur essentiel du fonctionnement cérébral. Il est en effet responsable de l’approvisionnement des cellules en oxygène et glucose ainsi que de l’évacuation des déchets métaboliques comme le dioxyde de carbone. Ce système est composé d’une multitude de petit vaisseaux appelés artérioles, veinules et capillaires, qui sont entourés de tissu cérébral. Ces vaisseaux forment un immense réseau qui étend ses ramifications à travers tout le cerveau. A cause de son rôle prépondérant dans l’homéostasie cérébrale le système microvasculaire est impliqué dansde nombreuses pathologies, allant de l’accident vasculaire cérébral aux maladies neurodégénératives. Ces dernières décennies ont été marquées par des avancées significatives dans le domaine de l’imagerie du vivant (e.g. la microscopie multi-photonique) qui ont permis l’observation du système microvasculaire cérébral avec un niveau de précision sans précédent. Ces techniques génèrent cependant de grandes quantités de données qu’il est difficile d’analyser sans outils théoriques adaptés. C’est pourquoi, dans cette thèse, nous développons des modèles capables de décrire l’écoulement sanguin ainsi que le transport de soluté au sein de vastes réseaux microvasculaires anatomiques. La principale difficulté dans la résolution de tels problèmes, vient de la taille de ces réseaux. En effet, même s’ils ne représentent qu’une fraction du système microvasculaire, ils sont composés de plusieurs dizaines de milliers de vaisseaux et possèdent des géométries complexes. Il est donc inenvisageable de résoudre l’écoulement sanguin et le transport de soluté par le biais de méthodes classiques comme les volumes finis ou les éléments finis. Afin de surmonter cette difficulté, nous combinons une approche réseau de pores avec des méthodes de changement d’échelles (prise de moyenne volumique et développements asymptotiques) et des fonctions de Green. Cela nous permet de simplifier à la fois la description de l’écoulement sanguin et du transport de soluté tout en restant cohérent avec la physique sous-jacente. Pour nous assurer de la pertinence de ces simplifications nous validons systématiquement nos modèles en les comparant à des mesures in vitro et in vivo si elles existent et à des solutions analytiques de référence sinon. Une fois validés, nous utilisons nos modèles afin d’élucider le rôle joué par le système microvas- culaire aux stades précoces de la maladie d’Alzheimer. En effet, il a été récemment montré qu’une baisse du débit sanguin cérébral était le premier marqueur quantitatif de la maladie. Simultanément, nos collaborateurs, les professeurs Schaffer et Nishimura de l’université de Cornell, ont observé chez les souris malades qu’une faible proportion (2%-4%) des capillaires étaient obstrués par des globules blancs. En conséquence ils ont injecté un anticorps inhibant l’adhésion de ces derniers. Les vaisseaux se sont alors débloqués, entraînant une augmentation du débit sanguin ainsi qu’une amélioration des capacités cognitives chez les souris malades. Si l’on suppose qu’après l’injection le débit sanguin retrouve sa valeur de référence, on peut estimer que les occlusions capillaires réduisent de 20 % à 30 % le débit sanguin. Une si faible proportion de capillaires obstrués peut-elle avoir un impact aussi important sur le débit sanguin cérébral ? Il est difficile de répondre simplement à cette question en se fiant uniquement à l’expérience puisqu’il est quasiment impossible d’isoler un tel phénomène in vivo que ce soit chez la souris ou chez l’humain. Pour contourner ce problème nous utilisons nos modèles et simulons numériquement l’impact de ces occlusions sur le débit sanguin. Nous trouvons que 2% à 4% d’occlusions capillaires conduisent à une baisse de débit pouvant aller jusqu’à 12%, faisant de ces occlusions un mécanisme important dans l’apparition de la maladie d’Alzheimer. Pour finir, nous quantifions leurs conséquences sur les échanges moléculaires

    Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or localized modifications of arteriolar diameters

    Get PDF
    In a companion paper (Lorthois et al., Neuroimage, inpress),we perform the first simulations of blood flow in an anatomically accurate large human intra-cortical vascular network (~10000 segments), using a 1D non-linear model taking into account the complex rheological properties of blood flow in microcirculation. This model predicts blood pressure, blood flow and hematocrit distributions, volumes of functional vascular territories, regional flow at voxel and network scales, etc. Using the same approach, we study flow reorganizations induced by global arteriolar vasodilations (an isometabolic global increase in cerebral blood flow). For small to moderate global vasodilations, the relationship between changes in volume and changes in flowis in close agreement with Grubb's law, providing a quantitative tool for studying the variations of its exponent with underlying vascular architecture. A significant correlation between blood flow and vascular structure at the voxel scale, practically unchanged with respect to baseline, is demonstrated. Furthermore, the effects of localized arteriolar vasodilations, representative of a local increase in metabolic demand, are analyzed. In particular, localized vasodilations induce flowchanges, including vascular steal, in the neighboring arteriolar trunks at small distances (< 300 ÎĽm), while their influence in the neighboring veins is much larger (about 1 mm), which provides an estimate of the vascular point spread function.More generally, for the first time, the hemodynamic component of various functional neuroimaging techniques has been isolated from metabolic and neuronal components, and a direct relationship with several known characteristics of the BOLD signal has been demonstrated
    • …
    corecore