2,466 research outputs found

    Study of resonances in 1 x 25 kV AC traction systems with external balancing equipment

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.AC traction systems are 1 × 25 or 2 × 25 kV/50 Hz single-phase, nonlinear, time-varying loads that can cause power-quality problems, such as unbalanced or distorted voltages. To reduce unbalance, external balancing equipment is usually connected to these systems, forming the Steinmetz circuit. Parallel resonances can occur in these types of circuits, exciting the harmonic emissions (below 2 kHz) of railway-adjustable speed drives. This paper studies these resonances at pantograph terminals and provides analytical expressions to determine their harmonic frequencies. The expressions are validated from several traction systems in the literature and PSCAD simulations.Postprint (author's final draft

    Harmonics Analysis Due to Connecting an Electrical Traction to A 3-phase Power Supply System Through V/V Transformer

    Get PDF
    The wide application and usage of electrical traction system presents utilities with planning and operation challenges. Electric railways impose several power quality problems to the utility grid. Such as generated large negative sequence components (NSCs), undesirable harmonics, cause system voltage and current unbalance. Harmonics and unbalanced voltage also may cause negative effects on the components of the power system such as: overheating the transformers and the transmission lines, vibration and cause torque reduction of rotating machines, additional losses of lines and transformers, interference with communication systems, malfunctions of protection relays, measuring instrument error. All these problems have become more and more significant. This paper is an attempt to quantify and assess the impact of electrical traction on the grid side through a V/V transformer. Firstly in this paper, the typical utility power grid and traction power supply system model are designed. Then, the traction system is integrated with the power supply system through a V/V transformer. Two cases of the connection are considered. The first case, when the traction system is connected to one side of transformer. The second case, when there is a balance traction load on the both transformer side. Finally, PSCAD simulation is used to analyze the power system quality and to estimate the harmonics that are generated in the traction and power supply system sides due to this integration. The simulation results show that, in the both cases, high levels of voltage and current harmonics are generated in the traction side. These harmonics are generated only on the phases that the traction is connected to them, while the other phase will not be affected. Also, it is observed that, the generated harmonics at the traction load side have also been transferred to the power supply system side though the transformer

    Powerflow calculations in powersystems considering traction load

    Get PDF
    Nowadays, the negative impact of traction load on power system operation poses a serious problem that may lead to false tripping or even failures of relay protection devices and reduce the quality of electrical energy. This situation is typical for the Zabaikal power system, in which in some areas the share of electricity consumption by railway reaches 70% of total consumption. A computing tool, that would allow simultaneous analysis of the modes, both in the utility's grid and in the traction network, do not exist. The inability to carry out such analysis often leads to inconsistency in the actions of control centers and railway transport authorities, especially when maintenance planning. Mathematic modeling in such software systems as "Mustang", "RastrWin3", "MathCAD", “Matlab/Simulink”, “PSCAD”, “Kortes”. The developed model represents Zabaikal power system and contain detailed railway between substation Razmahnino and substation Shilka. Negative-sequence voltage unbalance factors were calculated for the case of train movement between substation Razmahnino and substation Shilka. Also, the necessity of back-up relays tripping values correction is stated. It was shown that for the powerflow calculations taking into account the traction load, it is rational to use a complex mathematical model, which uses compatible software systems with the ability of quick and easy data exchange

    Impact of New Madrid Seismic Zone Earthquakes on the Central USA, Vol. 1 and 2

    Get PDF
    The information presented in this report has been developed to support the Catastrophic Earthquake Planning Scenario workshops held by the Federal Emergency Management Agency. Four FEMA Regions (Regions IV, V, VI and VII) were involved in the New Madrid Seismic Zone (NMSZ) scenario workshops. The four FEMA Regions include eight states, namely Illinois, Indiana, Kentucky, Tennessee, Alabama, Mississippi, Arkansas and Missouri. The earthquake impact assessment presented hereafter employs an analysis methodology comprising three major components: hazard, inventory and fragility (or vulnerability). The hazard characterizes not only the shaking of the ground but also the consequential transient and permanent deformation of the ground due to strong ground shaking as well as fire and flooding. The inventory comprises all assets in a specific region, including the built environment and population data. Fragility or vulnerability functions relate the severity of shaking to the likelihood of reaching or exceeding damage states (light, moderate, extensive and near-collapse, for example). Social impact models are also included and employ physical infrastructure damage results to estimate the effects on exposed communities. Whereas the modeling software packages used (HAZUS MR3; FEMA, 2008; and MAEviz, Mid-America Earthquake Center, 2008) provide default values for all of the above, most of these default values were replaced by components of traceable provenance and higher reliability than the default data, as described below. The hazard employed in this investigation includes ground shaking for a single scenario event representing the rupture of all three New Madrid fault segments. The NMSZ consists of three fault segments: the northeast segment, the reelfoot thrust or central segment, and the southwest segment. Each segment is assumed to generate a deterministic magnitude 7.7 (Mw7.7) earthquake caused by a rupture over the entire length of the segment. US Geological Survey (USGS) approved the employed magnitude and hazard approach. The combined rupture of all three segments simultaneously is designed to approximate the sequential rupture of all three segments over time. The magnitude of Mw7.7 is retained for the combined rupture. Full liquefaction susceptibility maps for the entire region have been developed and are used in this study. Inventory is enhanced through the use of the Homeland Security Infrastructure Program (HSIP) 2007 and 2008 Gold Datasets (NGA Office of America, 2007). These datasets contain various types of critical infrastructure that are key inventory components for earthquake impact assessment. Transportation and utility facility inventories are improved while regional natural gas and oil pipelines are added to the inventory, alongside high potential loss facility inventories. The National Bridge Inventory (NBI, 2008) and other state and independent data sources are utilized to improve the inventory. New fragility functions derived by the MAE Center are employed in this study for both buildings and bridges providing more regionally-applicable estimations of damage for these infrastructure components. Default fragility values are used to determine damage likelihoods for all other infrastructure components. The study reports new analysis using MAE Center-developed transportation network flow models that estimate changes in traffic flow and travel time due to earthquake damage. Utility network modeling was also undertaken to provide damage estimates for facilities and pipelines. An approximate flood risk model was assembled to identify areas that are likely to be flooded as a result of dam or levee failure. Social vulnerability identifies portions of the eight-state study region that are especially vulnerable due to various factors such as age, income, disability, and language proficiency. Social impact models include estimates of displaced and shelter-seeking populations as well as commodities and medical requirements. Lastly, search and rescue requirements quantify the number of teams and personnel required to clear debris and search for trapped victims. The results indicate that Tennessee, Arkansas, and Missouri are most severely impacted. Illinois and Kentucky are also impacted, though not as severely as the previous three states. Nearly 715,000 buildings are damaged in the eight-state study region. About 42,000 search and rescue personnel working in 1,500 teams are required to respond to the earthquakes. Damage to critical infrastructure (essential facilities, transportation and utility lifelines) is substantial in the 140 impacted counties near the rupture zone, including 3,500 damaged bridges and nearly 425,000 breaks and leaks to both local and interstate pipelines. Approximately 2.6 million households are without power after the earthquake. Nearly 86,000 injuries and fatalities result from damage to infrastructure. Nearly 130 hospitals are damaged and most are located in the impacted counties near the rupture zone. There is extensive damage and substantial travel delays in both Memphis, Tennessee, and St. Louis, Missouri, thus hampering search and rescue as well as evacuation. Moreover roughly 15 major bridges are unusable. Three days after the earthquake, 7.2 million people are still displaced and 2 million people seek temporary shelter. Direct economic losses for the eight states total nearly $300 billion, while indirect losses may be at least twice this amount. The contents of this report provide the various assumptions used to arrive at the impact estimates, detailed background on the above quantitative consequences, and a breakdown of the figures per sector at the FEMA region and state levels. The information is presented in a manner suitable for personnel and agencies responsible for establishing response plans based on likely impacts of plausible earthquakes in the central USA.Armu W0132T-06-02unpublishednot peer reviewe

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts

    Intelligent Systems Supporting the Use of Energy Systems and Other Complex Technical Objects, Modeling, Testing and Analysis of Their Reliability in the Operation Process

    Get PDF
    The book focuses on a novel application of Intelligent Systems for supporting the operation and maintenance of power systems or other technical facilities within wind farms. Indicating a different perception of the reliability of wind farm facilities led to the possibility of extending the operation lifetime and operational readiness of wind farm equipment. Additionally, the presented approach provides a basis for extending its application to the testing and analysis of other technical facilities

    Pantograph-To-OHL Arc: Conducted Effects in DC Railway Supply System

    Get PDF
    The electrical arc occurring in the sliding contact between the supply contact line and the current collector (pantograph) of an electrical locomotive is a fast transient phenomenon able to degrade progressively the line-To-pantograph contact quality and, consequently, the continuity of operation. In order to increase the energy efficiency of the railway system, an inexpensive solution is constituted by the detection of the arc event by the analysis of voltage and current measurements already available on-board train. An essential activity to reach this objective is to set up a reliable electrical model of the railway system in which the arc events originate. To this end, this paper presents a combination of experimental and simulation analysis for the development of an electrical model of a direct current (dc) 3 kV railway system, which is aimed at better understanding the propagation of conducted effects generated by arc events. First, a laboratory experimental activity is carried out to investigate the electrical dynamic characteristics of the arc in a controlled environment. Then, a model of the dc railway system is derived and validated by using the experimental data collected in a measurement campaign on-board train. Finally, a sensitivity analysis of the main model parameters is carried out
    corecore