2,203 research outputs found

    Neural population coding: combining insights from microscopic and mass signals

    Get PDF
    Behavior relies on the distributed and coordinated activity of neural populations. Population activity can be measured using multi-neuron recordings and neuroimaging. Neural recordings reveal how the heterogeneity, sparseness, timing, and correlation of population activity shape information processing in local networks, whereas neuroimaging shows how long-range coupling and brain states impact on local activity and perception. To obtain an integrated perspective on neural information processing we need to combine knowledge from both levels of investigation. We review recent progress of how neural recordings, neuroimaging, and computational approaches begin to elucidate how interactions between local neural population activity and large-scale dynamics shape the structure and coding capacity of local information representations, make them state-dependent, and control distributed populations that collectively shape behavior

    Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing

    Get PDF
    Biologically Inspired Computer VisionApplications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing Reza Hojjaty Saeedy Abstract Biological vision systems are remarkable at extracting and analyzing the information that is essential for vital functional needs. They perform all these tasks with both high sensitivity and strong reliability. They can efficiently and quickly solve most of the difficult computa- tional problems that are still challenging for artificial systems, such as scene segmentation, 3D/depth perception, motion recognition, etc. So it is no surprise that biological vision systems have been a source of inspiration for computer vision problems. In this research, we aim to provide a computer vision task centric framework out of models primarily originating in biological vision studies. We try to address two specific tasks here: saliency detection and object classification. In both of these tasks we use features extracted from computational models of biological vision systems as a starting point for further processing. Saliency maps are 2D topographic maps that catch the most conspicuous regions of a scene, i.e. the pixels in an image that stand out against their neighboring pixels. So these maps can be thought of as representations of the human attention process and thus have a lot of applications in computer vision. We propose a cascade that combines two well- known computational models for perception of color and orientation in order to simulate the responses of the primary areas of the primate visual cortex. We use these responses as inputs to a spiking neural network(SNN) and finally the output of this SNN will serve as the input to our post-processing algorithm for saliency detection. Object classification/detection is the most studied task in computer vision and machine learning and it is interesting that while it looks trivial for humans it is a difficult problem for artificial systems. For this part of the thesis we also design a pipeline including feature extraction using biologically inspired systems, manifold learning for dimensionality reduction and self-organizing(vector quantization) neural network as a supervised method for prototype learning

    Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing

    Get PDF
    Biologically Inspired Computer VisionApplications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing Reza Hojjaty Saeedy Abstract Biological vision systems are remarkable at extracting and analyzing the information that is essential for vital functional needs. They perform all these tasks with both high sensitivity and strong reliability. They can efficiently and quickly solve most of the difficult computa- tional problems that are still challenging for artificial systems, such as scene segmentation, 3D/depth perception, motion recognition, etc. So it is no surprise that biological vision systems have been a source of inspiration for computer vision problems. In this research, we aim to provide a computer vision task centric framework out of models primarily originating in biological vision studies. We try to address two specific tasks here: saliency detection and object classification. In both of these tasks we use features extracted from computational models of biological vision systems as a starting point for further processing. Saliency maps are 2D topographic maps that catch the most conspicuous regions of a scene, i.e. the pixels in an image that stand out against their neighboring pixels. So these maps can be thought of as representations of the human attention process and thus have a lot of applications in computer vision. We propose a cascade that combines two well- known computational models for perception of color and orientation in order to simulate the responses of the primary areas of the primate visual cortex. We use these responses as inputs to a spiking neural network(SNN) and finally the output of this SNN will serve as the input to our post-processing algorithm for saliency detection. Object classification/detection is the most studied task in computer vision and machine learning and it is interesting that while it looks trivial for humans it is a difficult problem for artificial systems. For this part of the thesis we also design a pipeline including feature extraction using biologically inspired systems, manifold learning for dimensionality reduction and self-organizing(vector quantization) neural network as a supervised method for prototype learning

    Probabilistic models of early vision

    Get PDF
    How do our brains transform patterns of light striking the retina into useful knowledge about objects and events of the external world? Thanks to intense research into the mechanisms of vision, much is now known about this process. However, we do not yet have anything close to a complete picture, and many questions remain unanswered. In addition to its clinical relevance and purely academic significance, research on vision is important because a thorough understanding of biological vision would probably help solve many major problems in computer vision. A major framework for investigating the computational basis of vision is what might be called the probabilistic view of vision. This approach emphasizes the general importance of uncertainty and probabilities in perception and, in particular, suggests that perception is tightly linked to the statistical structure of the natural environment. This thesis investigates this link by building statistical models of natural images, and relating these to what is known of the information processing performed by the early stages of the primate visual system. Recently, it was suggested that the response properties of simple cells in the primary visual cortex could be interpreted as the result of the cells performing an independent component analysis of the natural visual sensory input. This thesis provides some further support for that proposal, and, more importantly, extends the theory to also account for complex cell properties and the columnar organization of the primary visual cortex. Finally, the application of these methods to predicting neural response properties further along the visual pathway is considered. Although the models considered account for only a relatively small part of known facts concerning early visual information processing, it is nonetheless a rather impressive amount considering the simplicity of the models. This is encouraging, and suggests that many of the intricacies of visual information processing might be understood using fairly simple probabilistic models of natural sensory input.reviewe

    Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network

    Get PDF
    Synchronization has been suggested as a mechanism of binding distributed feature representations facilitating segmentation of visual stimuli. Here we investigate this concept based on unsupervised learning using natural visual stimuli. We simulate dual-variable neural oscillators with separate activation and phase variables. The binding of a set of neurons is coded by synchronized phase variables. The network of tangential synchronizing connections learned from the induced activations exhibits small-world properties and allows binding even over larger distances. We evaluate the resulting dynamic phase maps using segmentation masks labeled by human experts. Our simulation results show a continuously increasing phase synchrony between neurons within the labeled segmentation masks. The evaluation of the network dynamics shows that the synchrony between network nodes establishes a relational coding of the natural image inputs. This demonstrates that the concept of binding by synchrony is applicable in the context of unsupervised learning using natural visual stimuli

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence

    Get PDF
    Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and environmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract knowledge to represent spatial positions, which hints at a universal theory of cognition.Fil: Fernandez Leon, Jose Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentin
    corecore