4,900 research outputs found

    Building Resilient Cloud Over Unreliable Commodity Infrastructure

    Full text link
    Cloud Computing has emerged as a successful computing paradigm for efficiently utilizing managed compute infrastructure such as high speed rack-mounted servers, connected with high speed networking, and reliable storage. Usually such infrastructure is dedicated, physically secured and has reliable power and networking infrastructure. However, much of our idle compute capacity is present in unmanaged infrastructure like idle desktops, lab machines, physically distant server machines, and laptops. We present a scheme to utilize this idle compute capacity on a best-effort basis and provide high availability even in face of failure of individual components or facilities. We run virtual machines on the commodity infrastructure and present a cloud interface to our end users. The primary challenge is to maintain availability in the presence of node failures, network failures, and power failures. We run multiple copies of a Virtual Machine (VM) redundantly on geographically dispersed physical machines to achieve availability. If one of the running copies of a VM fails, we seamlessly switchover to another running copy. We use Virtual Machine Record/Replay capability to implement this redundancy and switchover. In current progress, we have implemented VM Record/Replay for uniprocessor machines over Linux/KVM and are currently working on VM Record/Replay on shared-memory multiprocessor machines. We report initial experimental results based on our implementation.Comment: Oral presentation at IEEE "Cloud Computing for Emerging Markets", Oct. 11-12, 2012, Bangalore, Indi

    Stealthy Deception Attacks Against SCADA Systems

    Full text link
    SCADA protocols for Industrial Control Systems (ICS) are vulnerable to network attacks such as session hijacking. Hence, research focuses on network anomaly detection based on meta--data (message sizes, timing, command sequence), or on the state values of the physical process. In this work we present a class of semantic network-based attacks against SCADA systems that are undetectable by the above mentioned anomaly detection. After hijacking the communication channels between the Human Machine Interface (HMI) and Programmable Logic Controllers (PLCs), our attacks cause the HMI to present a fake view of the industrial process, deceiving the human operator into taking manual actions. Our most advanced attack also manipulates the messages generated by the operator's actions, reversing their semantic meaning while causing the HMI to present a view that is consistent with the attempted human actions. The attacks are totaly stealthy because the message sizes and timing, the command sequences, and the data values of the ICS's state all remain legitimate. We implemented and tested several attack scenarios in the test lab of our local electric company, against a real HMI and real PLCs, separated by a commercial-grade firewall. We developed a real-time security assessment tool, that can simultaneously manipulate the communication to multiple PLCs and cause the HMI to display a coherent system--wide fake view. Our tool is configured with message-manipulating rules written in an ICS Attack Markup Language (IAML) we designed, which may be of independent interest. Our semantic attacks all successfully fooled the operator and brought the system to states of blackout and possible equipment damage

    AUTOMATED CYBER OPERATIONS MISSION DATA REPLAY

    Get PDF
    The Persistent Cyber Training Environment (PCTE) has been developed as the joint force solution to provide a single training environment for cyberspace operations. PCTE offers a closed network for Joint Cyberspace Operations Forces, which provides a range of training solutions from individual sustainment training to mission rehearsal and post-operation analysis. Currently, PCTE does not have the ability to replay previously executed training scenarios or external scenarios. Replaying cyber mission data on a digital twin virtual network within PCTE would support operator training as well as enable development and testing of new strategies for offensive and defensive cyberspace operations. A necessary first step in developing such a tool is to acquire network specifications for a target network, or to extract network specifications from a cyber mission data set. This research developed a program design and proof-of-concept tool, Automated Cyber Operations Mission Data Replay (ACOMDR), to extract a portion of the network specifications necessary to instantiate a digital twin network within PCTE from cyber mission data. From this research, we were able to identify key areas for future work to increase the fidelity of the network specification and replay cyber events within PCTE.Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning

    Full text link
    This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of a commonly used reference model. To demonstrate the generality of the method, the exact same algorithm was also tested by training it for an overtaking case on a road with oncoming traffic. Furthermore, a novel way of applying a convolutional neural network to high level input that represents interchangeable objects is also introduced
    • …
    corecore