205,965 research outputs found

    STUDY OF THE MICRO UNMANNED AERIAL VEHICLE (MUAV) VERTICAL TAKE-OFF AND LANDING (VTOL) CONTROL SYSTEM

    Get PDF
    A stable Vertical Take-off and Landing Operation (VTOL) capability is very important for Micro Unmanned Aerial Vehicle (MUAV). It will enable the aircraft to conduct operation in such difficult situations. To achieve that, it becomes a main priority to have a suitable and good control system to control the stability of the MUAV's body during take-off and landing operations. The objectives of this project are to study possible methods of controlling the MUAV's VTOL operations, the quad rotor dynamic modeling concept of the MUAV as well as the control allocation for the MUAV's VTOL system. After that, the modeling and simulation processes will be conducted to the selected control allocation. As a first step, the literature review stage which covers the studies from various sources is done to get a proper idea regarding the MUA V and VTOL operation. The modeling and control allocation study is conducted to study the method in conducting modeling processes and control allocation involved for the control system. Along the process, the design methodology has been discussed along with an iterative algorithm derived. All the data, parameters and formulas have been validated during the data analysis and validation stage. After all of information have been gathered and validated, the control system has been modeled and simulated during the final stage of the project. In this stage also, all the characteristics and parameters have been adjusted and perfected to get the desired results. As for the results, the final control system is consist of a set of sensors that will give reading in x, y and z-coordinates. Besides, the self-programmable Microchip picl8f4431 processor also has been selected which the control system coding can be embedded. The selected microchip has the onboard highspeed analog digital (A/D) converter and the power pulse width modulation (PWM) module. The module on the microchip will convert the analog signal from the sensors to the digital signal so that it can be read by the motor driver. The motor driver will equally distribute and balance the power to all four of the MUAV's motors so that it can ensure the MUAV's body remains stable during take-off and landing operations

    STUDY OF THE MICRO UNMANNED AERIAL VEHICLE (MUAV) VERTICAL TAKE-OFF AND LANDING (VTOL) CONTROL SYSTEM

    Get PDF
    A stable Vertical Take-off and Landing Operation (VTOL) capability is very important for Micro Unmanned Aerial Vehicle (MUAV). It will enable the aircraft to conduct operation in such difficult situations. To achieve that, it becomes a main priority to have a suitable and good control system to control the stability of the MUAV's body during take-off and landing operations. The objectives of this project are to study possible methods of controlling the MUAV's VTOL operations, the quad rotor dynamic modeling concept of the MUAV as well as the control allocation for the MUAV's VTOL system. After that, the modeling and simulation processes will be conducted to the selected control allocation. As a first step, the literature review stage which covers the studies from various sources is done to get a proper idea regarding the MUA V and VTOL operation. The modeling and control allocation study is conducted to study the method in conducting modeling processes and control allocation involved for the control system. Along the process, the design methodology has been discussed along with an iterative algorithm derived. All the data, parameters and formulas have been validated during the data analysis and validation stage. After all of information have been gathered and validated, the control system has been modeled and simulated during the final stage of the project. In this stage also, all the characteristics and parameters have been adjusted and perfected to get the desired results. As for the results, the final control system is consist of a set of sensors that will give reading in x, y and z-coordinates. Besides, the self-programmable Microchip picl8f4431 processor also has been selected which the control system coding can be embedded. The selected microchip has the onboard highspeed analog digital (A/D) converter and the power pulse width modulation (PWM) module. The module on the microchip will convert the analog signal from the sensors to the digital signal so that it can be read by the motor driver. The motor driver will equally distribute and balance the power to all four of the MUAV's motors so that it can ensure the MUAV's body remains stable during take-off and landing operations

    Advanced Information System for Safety-Critical Processes

    Get PDF
    The paper deals with the design and implementation of an intelligent modular information system (IMIS) for modeling and predictive decision making supervisory control of some important critical processes in a nuclear power plant (nuclear reactor) using selected soft computing methods. The developed IMIS enables monitoring critical states, safety impact analysis and prediction of dangerous situations. It also recommends the operator possibilities how to proceed to ensure safety of operations and humans and environment. The proposed complex IMIS has been tested on real data from a nuclear power plant process primarily used as supervisory information for decision making support and management of critical processes. The core of the proposed IMIS is a general nonlinear neural network mathematical model. For prediction of selected process variables an artificial neural network of multilayer perceptron type (MLP) has been used. The effective Levenberg-Marquardt method was used to train the MLP network. Testing and verification of the neural prediction model were carried out on real operating data measurements obtained from the NPP Jaslovske Bohunice

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented
    corecore