2,270 research outputs found

    Using Partial Orders for the Efficient Verification of Deadlock Freedom and Safety Properties

    Full text link
    This article presents an algorithm for detecting deadlocks in concurrent finite-state systems without incurring most of the state explosion due to the modeling of concurrency by interleaving. For systems that have a high level of concurrency, our algorithm can be much more efficient than the classical exploration of the whole state space. Finally, we show that our algorithm can also be used for verifying arbitrary safety properties

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    A distributed knowledge-based approach to flexible automation : the contract-net framework

    Get PDF
    Includes bibliographical references (p. 26-29)

    10161 Abstracts Collection -- Decision Procedures in Software, Hardware and Bioware

    Get PDF
    From April 19th, 2010 to April 23rd, 2010, the Dagstuhl Seminar 10161 "Decision Procedures in Soft, Hard and Bio-ware" was held in Schloss Dagstuhl Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as links to slides and links to papers behind the presentations and papers produced as a result of the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor
    • …
    corecore