4,081 research outputs found

    Methodology for automatic recovering of 3D partitions from unstitched faces of non-manifold CAD models

    Get PDF
    Data exchanges between different software are currently used in industry to speed up the preparation of digital prototypes for Finite Element Analysis (FEA). Unfortunately, due to data loss, the yield of the transfer of manifold models rarely reaches 1. In the case of non-manifold models, the transfer results are even less satisfactory. This is particularly true for partitioned 3D models: during the data transfer based on the well-known exchange formats, all 3D partitions are generally lost. Partitions are mainly used for preparing mesh models required for advanced FEA: mapped meshing, material separation, definition of specific boundary conditions, etc. This paper sets up a methodology to automatically recover 3D partitions from exported non-manifold CAD models in order to increase the yield of the data exchange. Our fully automatic approach is based on three steps. First, starting from a set of potentially disconnected faces, the CAD model is stitched. Then, the shells used to create the 3D partitions are recovered using an iterative propagation strategy which starts from the so-called manifold vertices. Finally, using the identified closed shells, the 3D partitions can be reconstructed. The proposed methodology has been validated on academic as well as industrial examples.This work has been carried out under a research contract between the Research and Development Direction of the EDF Group and the Arts et MĂŠtiers ParisTech Aix-en-Provence

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    A hierarchy of models for simulating experimental results from a 3D heterogeneous porous medium

    Full text link
    In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly heterogeneous (σY2=5.7\sigma_Y^2=5.7), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a high-hydraulic-conductivity matrix. The bi-modal medium was saturated with tracers, and then flushed with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity to assess their ability to accurately represent the measured breakthrough curves. The most information-rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and initial conditions, and medium properties were fully independently characterized experimentally with high fidelity. The reduced models included; (2) a simplified numerical model identical to the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coefficient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer coefficient. The results illustrated that all four models provided accurate representations of the experimental breakthrough curves as measured by global RMS error. The primary component of error induced in the upscaled models appeared to arise from the neglect of convection within the inclusions. Interestingly, these results suggested that the conventional convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models with high fidelity without requiring the imposition of a more complex non-Fickian model.Comment: 27 pages, 9 Figure

    Three-dimensional modeling of natural heterogeneous objects

    Get PDF
    En la medicina y otros campos relacionados cuando se va a estudiar un objeto natural, se toman imĂĄgenes de tomografĂ­a computarizada a travĂŠs de varios cortes paralelos. Estos cortes se apilan en datos de volumen y se reconstruyen en modelos computacionales con el fin de estudiar la estructura de dicho objeto. Para construir con ĂŠxito modelos tridimensionales es importante la identificaciĂłn y extracciĂłn precisa de todas las regiones que comprenden el objeto heterogĂŠneo natural. Sin embargo, la construcciĂłn de modelos tridimensionales por medio del computador a partir de imĂĄgenes mĂŠdicas sigue siendo un problema difĂ­cil y plantea dos problemas relacionados con las inexactitudes que surgen de, y son inherentes al proceso de adquisiciĂłn de datos. El primer problema es la apariciĂłn de artefactos que distorsionan el lĂ­mite entre las regiones. Este es un problema comĂşn en la generaciĂłn de mallas a partir de imĂĄgenes mĂŠdicas, tambiĂŠn conocido como efecto de escalĂłn. El segundo problema es la extracciĂłn de mallas suaves 3D que se ajustan a los lĂ­mites de las regiĂłn que conforman los objetos heterogĂŠneos naturales descritos en las imĂĄgenes mĂŠdicas. Para resolver estos problemas, se propone el mĂŠtodo CAREM y el mĂŠtodo RAM. El ĂŠnfasis de esta investigaciĂłn estĂĄ puesto en la exactitud y fidelidad a la forma de las regiones necesaria en las aplicaciones biomĂŠdicas. Todas las regiones representadas de forma implĂ­cita que componen el objeto heterogĂŠneo natural se utilizan para generar mallas adaptadas a los requisitos de los mĂŠtodos de elementos finitos a travĂŠs de un enfoque de modelado de ingenierĂ­a reversa, por lo tanto, estas regiones se consideran como un todo en lugar de piezas aisladas ensambladas.In medicine and other related fields when a natural object is going to be studied, computed tomography images are taken through several parallel slices. These slices are then stacked in volume data and reconstructed into 3D computer models. In order to successfully build 3D computer models of natural heterogeneous objects, accurate identification and extraction of all regions comprising the natural heterogeneous object is important. However, building 3D computer models of natural heterogeneous objects from medical images is still a challenging problem, and poses two issues related to the inaccuracies which arise from and are inherent to the data acquisition process. The first issue is the appearance of aliasing artifacts in the boundary between regions, a common issue in mesh generation from medical images, also known as stair-stepped artifacts. The second issue is the extraction of smooth 3D multi-region meshes that conform to the region boundaries of natural heterogeneous objects described in the medical images. To solve these issues, the CAREM method and the RAM method are proposed. The emphasis of this research is placed on accuracy and shape fidelity needed for biomedical applications. All implicitly represented regions composing the natural heterogeneous object are used to generate meshes adapted to the requirements of finite element methods through a reverse engineering modeling approach, thus these regions are considered as whole rather than loosely assembled parts.Doctor en IngenierĂ­aDoctorad
    • …
    corecore