20,034 research outputs found

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    Cell-Free Massive MIMO versus Small Cells

    Get PDF
    A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.Comment: EEE Transactions on Wireless Communications, accepted for publicatio

    Matching Theory for Backhaul Management in Small Cell Networks with mmWave Capabilities

    Full text link
    Designing cost-effective and scalable backhaul solutions is one of the main challenges for emerging wireless small cell networks (SCNs). In this regard, millimeter wave (mmW) communication technologies have recently emerged as an attractive solution to realize the vision of a high-speed and reliable wireless small cell backhaul network (SCBN). In this paper, a novel approach is proposed for managing the spectral resources of a heterogeneous SCBN that can exploit simultaneously mmW and conventional frequency bands via carrier aggregation. In particular, a new SCBN model is proposed in which small cell base stations (SCBSs) equipped with broadband fiber backhaul allocate their frequency resources to SCBSs with wireless backhaul, by using aggregated bands. One unique feature of the studied model is that it jointly accounts for both wireless channel characteristics and economic factors during resource allocation. The problem is then formulated as a one-to-many matching game and a distributed algorithm is proposed to find a stable outcome of the game. The convergence of the algorithm is proven and the properties of the resulting matching are studied. Simulation results show that under the constraints of wireless backhauling, the proposed approach achieves substantial performance gains, reaching up to 30%30 \% compared to a conventional best-effort approach.Comment: In Proc. of the IEEE International Conference on Communications (ICC), Mobile and Wireless Networks Symposium, London, UK, June 201
    corecore