389 research outputs found

    Resonant Neural Dynamics of Speech Perception

    Full text link
    What is the neural representation of a speech code as it evolves in time? How do listeners integrate temporally distributed phonemic information across hundreds of milliseconds, even backwards in time, into coherent representations of syllables and words? What sorts of brain mechanisms encode the correct temporal order, despite such backwards effects, during speech perception? How does the brain extract rate-invariant properties of variable-rate speech? This article describes an emerging neural model that suggests answers to these questions, while quantitatively simulating challenging data about audition, speech and word recognition. This model includes bottom-up filtering, horizontal competitive, and top-down attentional interactions between a working memory for short-term storage of phonetic items and a list categorization network for grouping sequences of items. The conscious speech and word recognition code is suggested to be a resonant wave of activation across such a network, and a percept of silence is proposed to be a temporal discontinuity in the rate with which such a resonant wave evolves. Properties of these resonant waves can be traced to the brain mechanisms whereby auditory, speech, and language representations are learned in a stable way through time. Because resonances are proposed to control stable learning, the model is called an Adaptive Resonance Theory, or ART, model.Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-01-1-0624)

    How Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex

    Full text link
    A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Going Beyond the "Synthetic Method": New Paradigms Cross-Fertilizing Robotics and Cognitive Neuroscience

    Get PDF
    In so-called ethorobotics and robot-supported social cognitive neurosciences, robots are used as scientific tools to study animal behavior and cognition. Building on previous epistemological analyses of biorobotics, in this article it is argued that these two research fields, widely differing from one another in the kinds of robots involved and in the research questions addressed, share a common methodology, which significantly differs from the "synthetic method" that, until recently, dominated biorobotics. The methodological novelty of this strategy, the research opportunities that it opens, and the theoretical and technological challenges that it gives rise to, will be discussed with reference to the peculiarities of the two research fields. Some broad methodological issues related to the generalization of results concerning robot-animal interaction to theoretical conclusions on animal-animal interaction will be identified and discussed

    "Consciousness". Selected Bibliography 1970 - 2001

    Get PDF
    This is a bibliography of books and articles on consciousness in philosophy, cognitive science, and neuroscience over the last 30 years. There are three main sections, devoted to monographs, edited collections of papers, and articles. The first two of these sections are each divided into three subsections containing books in each of the main areas of research. The third section is divided into 12 subsections, with 10 subject headings for philosophical articles along with two additional subsections for articles in cognitive science and neuroscience. Of course the division is somewhat arbitrary, but I hope that it makes the bibliography easier to use. This bibliography has first been compiled by Thomas Metzinger and David Chalmers to appear in print in two philosophical anthologies on conscious experience (Metzinger 1995a, b). From 1995 onwards it has been continuously updated by Thomas Metzinger, and now is freely available as a PDF-, RTF-, or HTML-file. This bibliography mainly attempts to cover the Anglo-Saxon and German debates, in a non-annotated, fully formatted way that makes it easy to "cut and paste" from the original file. To a certain degree this bibliography also contains items in other languages than English and German - all submissions in other languages are welcome. Last update of current version: July 13th, 2001

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    Towards a Theory of the Laminar Architecture of Cerebral Cortex: Computational Clues from the Visual System

    Full text link
    One of the most exciting and open research frontiers in neuroscience is that of seeking to understand the functional roles of the layers of cerebral cortex. New experimental techniques for probing the laminar circuitry of cortex have recently been developed, opening up novel opportunities for investigating ho1v its six-layered architecture contributes to perception and cognition. The task of trying to interpret this complex structure can be facilitated by theoretical analyses of the types of computations that cortex is carrying out, and of how these might be implemented in specific cortical circuits. We have recently developed a detailed neural model of how the parvocellular stream of the visual cortex utilizes its feedforward, feedback, and horizontal interactions for purposes of visual filtering, attention, and perceptual grouping. This model, called LAMINART, shows how these perceptual processes relate to the mechanisms which ensure stable development of cortical circuits in the infant, and to the continued stability of learning in the adult. The present article reviews this laminar theory of visual cortex, considers how it may be generalized towards a more comprehensive theory that encompasses other cortical areas and cognitive processes, and shows how its laminar framework generates a variety of testable predictions.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-0409); National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-92-1-1309, N00014-95-1-0657

    Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring

    Get PDF
    Over the last 2 decades, a large number of neurophysiological and neuroimaging studies of patients with schizophrenia have furnished in vivo evidence for dysconnectivity, ie, abnormal functional integration of brain processes. While the evidence for dysconnectivity in schizophrenia is strong, its etiology, pathophysiological mechanisms, and significance for clinical symptoms are unclear. First, dysconnectivity could result from aberrant wiring of connections during development, from aberrant synaptic plasticity, or from both. Second, it is not clear how schizophrenic symptoms can be understood mechanistically as a consequence of dysconnectivity. Third, if dysconnectivity is the primary pathophysiology, and not just an epiphenomenon, then it should provide a mechanistic explanation for known empirical facts about schizophrenia. This article addresses these 3 issues in the framework of the dysconnection hypothesis. This theory postulates that the core pathology in schizophrenia resides in aberrant N-methyl-D-aspartate receptor (NMDAR)–mediated synaptic plasticity due to abnormal regulation of NMDARs by neuromodulatory transmitters like dopamine, serotonin, or acetylcholine. We argue that this neurobiological mechanism can explain failures of self-monitoring, leading to a mechanistic explanation for first-rank symptoms as pathognomonic features of schizophrenia, and may provide a basis for future diagnostic classifications with physiologically defined patient subgroups. Finally, we test the explanatory power of our theory against a list of empirical facts about schizophrenia

    Transformation of a temporal speech cue to a spatial neural code in human auditory cortex

    Get PDF
    In speech, listeners extract continuously-varying spectrotemporal cues from the acoustic signal to perceive discrete phonetic categories. Spectral cues are spatially encoded in the amplitude of responses in phonetically-tuned neural populations in auditory cortex. It remains unknown whether similar neurophysiological mechanisms encode temporal cues like voice-onset time (VOT), which distinguishes sounds like /b/ and/p/. We used direct brain recordings in humans to investigate the neural encoding of temporal speech cues with a VOT continuum from /ba/ to /pa/. We found that distinct neural populations respond preferentially to VOTs from one phonetic category, and are also sensitive to sub-phonetic VOT differences within a population’s preferred category. In a simple neural network model, simulated populations tuned to detect either temporal gaps or coincidences between spectral cues captured encoding patterns observed in real neural data. These results demonstrate that a spatial/amplitude neural code underlies the cortical representation of both spectral and temporal speech cues

    Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries

    Get PDF
    The principles underlying functional asymmetries in cortex remain debated. For example, it is accepted that speech is processed bilaterally in auditory cortex, but a left hemisphere dominance emerges when the input is interpreted linguistically. The mechanisms, however, are contested, such as what sound features or processing principles underlie laterality. Recent findings across species (humans, canines and bats) provide converging evidence that spectrotemporal sound features drive asymmetrical responses. Typically, accounts invoke models wherein the hemispheres differ in time-frequency resolution or integration window size. We develop a framework that builds on and unifies prevailing models, using spectrotemporal modulation space. Using signal processing techniques motivated by neural responses, we test this approach, employing behavioural and neurophysiological measures. We show how psychophysical judgements align with spectrotemporal modulations and then characterize the neural sensitivities to temporal and spectral modulations. We demonstrate differential contributions from both hemispheres, with a left lateralization for temporal modulations and a weaker right lateralization for spectral modulations. We argue that representations in the modulation domain provide a more mechanistic basis to account for lateralization in auditory cortex
    • …
    corecore