2,052 research outputs found

    Modeling and visualizing networked multi-core embedded software energy consumption

    Full text link
    In this report we present a network-level multi-core energy model and a software development process workflow that allows software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into a software developer's workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-, multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how results can be presented and interpreted. The models all yield accuracy within an average +/-5 % error margin

    ENTRA:Whole-systems energy transparency

    Get PDF
    Promoting energy efficiency to a first class system design goal is an important research challenge. Although more energy-efficient hardware can be designed, it is software that controls the hardware; for a given system the potential for energy savings is likely to be much greater at the higher levels of abstraction in the system stack. Thus the greatest savings are expected from energy-aware software development, which is the vision of the EU ENTRA project. This article presents the concept of energy transparency as a foundation for energy-aware software development. We show how energy modelling of hardware is combined with static analysis to allow the programmer to understand the energy consumption of a program without executing it, thus enabling exploration of the design space taking energy into consideration. The paper concludes by summarising the current and future challenges identified in the ENTRA project.Comment: Revised preprint submitted to MICPRO on 27 May 2016, 23 pages, 3 figure

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Comparison of two approaches for web-based 3D visualization of smart building sensor data

    Get PDF
    Abstract. This thesis presents a comparative study on two different approaches for visualizing sensor data collected from smart buildings on the web using 3D virtual environments. The sensor data is provided by sensors that are deployed in real buildings to measure several environmental parameters including temperature, humidity, air quality and air pressure. The first approach uses the three.js WebGL framework to create the 3D model of a smart apartment where sensor data is illustrated with point and wall visualizations. Point visualizations show sensor values at the real locations of the sensors using text, icons or a mixture of the two. Wall visualizations display sensor values inside panels placed on the interior walls of the apartment. The second approach uses the Unity game engine to create the 3D model of a 4-floored hospice where sensor data is illustrated with aforementioned point visualizations and floor visualizations, where the sensor values are shown on the floor around the location of the sensors in form of color or other effects. The two approaches are compared with respect to their technical performance in terms of rendering speed, model size and request size, and with respect to the relative advantages and disadvantages of the two development environments as experienced in this thesis

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Measuring Energy

    Get PDF
    This chapter provides an introduction to quantifying the energy consumed by software. It is written for computer scientists, software engineers, embedded system developers and programmers who want to understand how to measure the energy consumed by the code they write in order to optimize for energy efficiency. We start with an overview of the electrical foundations of energy measurement and show how these are applied by reviewing the most commonly found energy sensing techniques. This is followed by a brief discussion of the signal processing required to obtain energy consumption data from sensing. We then present two energy measurement systems that are based on sensing techniques. Both can be used to directly measure the energy consumed by software running on embedded systems without the need to modify the hardware. As an alternative, regression-based techniques can be used to infer energy consumption based on monitoring events during program execution using counters monitors offered by the hardware. We introduce the foundations of regression analysis and illustrate how an energy model for an ARM processor can be built using linear regression. In the conclusion, we offer a wider discussion on what should be considered when selecting an energy measurement technique
    • …
    corecore