10,574 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Pollution-induced community tolerance in freshwater biofilms – from molecular mechanisms to loss of community functions

    Get PDF
    Exposure to herbicides poses a threat to aquatic biofilms by affecting their community structure, physiology and function. These changes render biofilms to become more tolerant, but on the downside community tolerance has ecologic costs. A concept that addresses induced community tolerance to a pollutant (PICT) was introduced by Blanck and Wängberg (1988). The basic principle of the concept is that microbial communities undergo pollution-induced succession when exposed to a pollutant over a long period of time, which changes communities structurally and functionally and enhancing tolerance to the pollutant exposure. However, the mechanisms of tolerance and the ecologic consequences were hardly studied up to date. This thesis addresses the structural and functional changes in biofilm communities and applies modern molecular methods to unravel molecular tolerance mechanisms. Two different freshwater biofilm communities were cultivated for a period of five weeks, with one of the communities being contaminated with 4 μg L-1 diuron. Subsequently, the communities were characterized for structural and functional differences, especially focusing on their crucial role of photosynthesis. The community structure of the autotrophs was assessed using HPLC-based pigment analysis and their functional alterations were investigated using Imaging-PAM fluorometry to study photosynthesis and community oxygen profiling to determine net primary production. Then, the molecular fingerprints of the communities were measured with meta-transcriptomics (RNA-Seq) and GC-based community metabolomics approaches and analyzed with respect to changes in their molecular functions. The communities were acute exposed to diuron for one hour in a dose-response design, to reveal a potential PICT and uncover related adaptation to diuron exposure. The combination of apical and molecular methods in a dose-response design enabled the linkage of functional effects of diuron exposure and underlying molecular mechanisms based on a sensitivity analysis. Chronic exposure to diuron impaired freshwater biofilms in their biomass accrual. The contaminated communities particularly lost autotrophic biomass, reflected by the decrease in specific chlorophyll a content. This loss was associated with a change in the molecular fingerprint of the communities, which substantiates structural and physiological changes. The decline in autotrophic biomass could be due to a primary loss of sensitive autotrophic organisms caused by the selection of better adapted species in the course of chronic exposure. Related to this hypothesis, an increase in diuron tolerance has been detected in the contaminated communities and molecular mechanisms facilitating tolerance have been found. It was shown that genes of the photosystem, reductive-pentose phosphate cycle and arginine metabolism were differentially expressed among the communities and that an increased amount of potential antioxidant degradation products was found in the contaminated communities. This led to the hypothesis that contaminated communities may have adapted to oxidative stress, making them less sensitive to diuron exposure. Moreover, the photosynthetic light harvesting complex was altered and the photoprotective xanthophyll cycle was increased in the contaminated communities. Despite these adaptation strategies, the loss of autotrophic biomass has been shown to impair primary production. This impairment persisted even under repeated short-term exposure, so that the tolerance mechanisms cannot safeguard primary production as a key function in aquatic systems.:1. The effect of chemicals on organisms and their functions .............................. 1 1.1 Welcome to the anthropocene .......................................................................... 1 1.2 From cellular stress responses to ecosystem resilience ................................... 3 1.2.1 The individual pursuit for homeostasis ....................................................... 3 1.2.2 Stability from diversity ................................................................................. 5 1.3 Community ecotoxicology - a step forward in monitoring the effects of chemical pollution? ................................................................................................................. 6 1.4 Functional ecotoxicological assessment of microbial communities ................... 9 1.5 Molecular tools – the key to a mechanistic understanding of stressor effects from a functional perspective in microbial communities? ...................................... 12 2. Aims and Hypothesis ......................................................................................... 14 2.1 Research question .......................................................................................... 14 2.2 Hypothesis and outline .................................................................................... 15 2.3 Experimental approach & concept .................................................................. 16 2.3.1 Aquatic freshwater biofilms as model community ..................................... 16 2.3.2 Diuron as model herbicide ........................................................................ 17 2.3.3 Experimental design ................................................................................. 18 3. Structural and physiological changes in microbial communities after chronic exposure - PICT and altered functional capacity ................................................. 21 3.1 Introduction ..................................................................................................... 21 3.2 Methods .......................................................................................................... 23 3.2.1 Biofilm cultivation ...................................................................................... 23 3.2.2 Dry weight and autotrophic index ............................................................. 23 3.2.4 Pigment analysis of periphyton ................................................................. 23 3.2.4.1 In-vivo pigment analysis for community characterization ....................... 24 3.2.4.2 In-vivo pigment analysis based on Imaging-PAM fluorometry ............... 24 3.2.4.3 In-vivo pigment fluorescence for tolerance detection ............................. 26 3.2.4.4 Ex-vivo pigment analysis by high-pressure liquid-chromatography ....... 27 3.2.5 Community oxygen metabolism measurements ....................................... 28 3.3 Results and discussion ................................................................................... 29 3.3.1 Comparison of the structural community parameters ............................... 29 3.3.2 Photosynthetic activity and primary production of the communities after selection phase ................................................................................................. 33 3.3.3 Acquisition of photosynthetic tolerance .................................................... 34 3.3.4 Primary production at exposure conditions ............................................... 36 3.3.5 Tolerance detection in primary production ................................................ 37 3.4 Summary and Conclusion ........................................................................... 40 4. Community gene expression analysis by meta-transcriptomics ................... 41 4.1 Introduction to meta-transcriptomics ............................................................... 41 4.2. Methods ......................................................................................................... 43 4.2.1 Sampling and RNA extraction................................................................... 43 4.2.2 RNA sequencing analysis ......................................................................... 44 4.2.3 Data assembly and processing................................................................. 45 4.2.4 Prioritization of contigs and annotation ..................................................... 47 4.2.5 Sensitivity analysis of biological processes .............................................. 48 4.3 Results and discussion ................................................................................... 48 4.3.1 Characterization of the meta-transcriptomic fingerprints .......................... 49 4.3.2 Insights into community stress response mechanisms using trend analysis (DRomic’s) ......................................................................................................... 51 4.3.3 Response pattern in the isoform PS genes .............................................. 63 4.5 Summary and conclusion ................................................................................ 65 5. Community metabolome analysis ..................................................................... 66 5.1 Introduction to community metabolomics ........................................................ 66 5.2 Methods .......................................................................................................... 68 5.2.1 Sampling, metabolite extraction and derivatisation................................... 68 5.2.2 GC-TOF-MS analysis ............................................................................... 69 5.2.3 Data processing and statistical analysis ................................................... 69 5.3 Results and discussion ................................................................................... 70 5.3.1 Characterization of the metabolic fingerprints .......................................... 70 5.3.2 Difference in the metabolic fingerprints .................................................... 71 5.3.3 Differential metabolic responses of the communities to short-term exposure of diuron ............................................................................................................ 73 5.4 Summary and conclusion ................................................................................ 78 6. Synthesis ............................................................................................................. 79 6.1 Approaches and challenges for linking molecular data to functional measurements ...................................................................................................... 79 6.2 Methods .......................................................................................................... 83 6.2.1 Summary on the data ............................................................................... 83 6.2.2 Aggregation of molecular data to index values (TELI and MELI) .............. 83 6.2.3 Functional annotation of contigs and metabolites using KEGG ................ 83 6.3 Results and discussion ................................................................................... 85 6.3.1 Results of aggregation techniques ........................................................... 85 6.3.2 Sensitivity analysis of the different molecular approaches and endpoints 86 6.3.3 Mechanistic view of the molecular stress responses based on KEGG functions ............................................................................................................ 89 6.4 Consolidation of the results – holistic interpretation and discussion ............... 93 6.4.1 Adaptation to chronic diuron exposure - from molecular changes to community effects.............................................................................................. 93 6.4.2 Assessment of the ecological costs of Pollution-induced community tolerance based on primary production ............................................................. 94 6.5 Outlook ............................................................................................................ 9

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Mathematical models to evaluate the impact of increasing serotype coverage in pneumococcal conjugate vaccines

    Get PDF
    Of over 100 serotypes of Streptococcus pneumoniae, only 7 were included in the first pneumo- coccal conjugate vaccine (PCV). While PCV reduced the disease incidence, in part because of a herd immunity effect, a replacement effect was observed whereby disease was increasingly caused by serotypes not included in the vaccine. Dynamic transmission models can account for these effects to describe post-vaccination scenarios, whereas economic evaluations can enable decision-makers to compare vaccines of increasing valency for implementation. This thesis has four aims. First, to explore the limitations and assumptions of published pneu- mococcal models and the implications for future vaccine formulation and policy. Second, to conduct a trend analysis assembling all the available evidence for serotype replacement in Europe, North America and Australia to characterise invasive pneumococcal disease (IPD) caused by vaccine-type (VT) and non-vaccine-types (NVT) serotypes. The motivation behind this is to assess the patterns of relative abundance in IPD cases pre- and post-vaccination, to examine country-level differences in relation to the vaccines employed over time since introduction, and to assess the growth of the replacement serotypes in comparison with the serotypes targeted by the vaccine. The third aim is to use a Bayesian framework to estimate serotype-specific invasiveness, i.e. the rate of invasive disease given carriage. This is useful for dynamic transmission modelling, as transmission is through carriage but a majority of serotype-specific pneumococcal data lies in active disease surveillance. This is also helpful to address whether serotype replacement reflects serotypes that are more invasive or whether serotypes in a specific location are equally more invasive than in other locations. Finally, the last aim of this thesis is to estimate the epidemiological and economic impact of increas- ing serotype coverage in PCVs using a dynamic transmission model. Together, the results highlight that though there are key parameter uncertainties that merit further exploration, divergence in serotype replacement and inconsistencies in invasiveness on a country-level may make a universal PCV suboptimal.Open Acces

    Contemporary, decadal, and millennial-scale permafrost- and vegetation dynamics and carbon release in an alpine region of Jotunheimen, Norway

    Get PDF
    Climatic warming in northern alpine regions facilitates the thawing of permafrost, the associated release of soil carbon into the atmosphere, and the altitudinal shifts in vegetation patterns. Here, a multi-disciplinary approach is adopted to investigate the response of an alpine permafrost landscape (Jotunheimen, Norway, with focus on Galdhøpiggen) to climatic changes over long- to medium timescales. First, a gas analyser is used to explore how ecosystem respiration is affected by ecosystem (soil and vegetation) and geomorphological (cryogenic disturbance) factors during the peak growing season. A palaeoecological record is then analysed to infer the past dynamics of the alpine tree lines and the lower limit of permafrost on Galdhøpiggen over the millennial- and centennial scales. Finally, remotely sensed satellite imagery is combined with observed air temperatures to create a model that provides an estimation of land surface temperatures over the past six decades. The model is then used to predict surface ‘greenness’ over the same period. Palynological evidence from Galdhøpiggen indicates that the altitudinal limits of alpine tree lines have shifted by hundreds of metres in response to climatic changes over the millennial scale. Since 1957, the model predictions indicate substantial increases in land surface temperatures and growing season surface ‘greenness’ (i.e., vegetation abundance) in Jotunheimen, but the change has not been spatially uniform. The highest increases were recorded over the low- and mid-alpine heaths above the tree line (1050-1500 m a.s.l.), which was attributed to increased shrub cover. This trend could facilitate carbon release from the ground, as peak growing season ecosystem respiration was found to be most strongly controlled by soil microclimate and plant growth forms. The likely future scenario in response to warming in Jotunheimen will be continued permafrost degradation, with higher altitudes (≥1500 m a.s.l.) experiencing decreased cryoturbation, increased shrub encroachment and higher surface CO2 emissions

    Avaliação da sensibilidade de duas macrófitas de água doce ao herbicida Roundup

    Get PDF
    Freshwater ecosystems are home to a multitude of species that live in the aquatic environment and are an integral part of the natural communities. Among these, freshwater macrophytes are particularly important, as their functions extend beyond those commonly provided by other freshwater primary producers, creating a variety of microhabitats for other species and being an important part of the ecosystem’s structure as well. The contamination of freshwater systems by herbicides has been recognized for several decades, and is linked with the increasing trends in the use of these pesticides. Glyphosate is the most widely applied herbicide in the world, with its popularity being attributed to the development of the Roundup formulation by Monsanto, which increases the toxicity of the active ingredient to the plants by promoting its penetration into the tissues. In the present dissertation, we assessed the effects of glyphosate and its commercial formulation Roundup to the two water macrophytes, Lemna minor and Lemna gibba. To better understand the impacts these chemicals have on overall plant health, we evaluated the sensitivity of four growth-endpoints (weight, frond number, frond area, and root length), as well as the assessment of sugar profiles as biochemical endpoints, to address the knowledge gap related to non-target biochemical effects of glyphosate in plants. Results evidenced Roundup to be more toxic to both macrophytes than the active ingredient alone, as well as a higher sensitivity of L. minor compared to L. gibba. The lowest EC10 value (0.75 mg a.i. l-1) was obtained for Yield in weight of L. minor exposed to Roundup. Furthermore, root length experienced an abrupt decrease from the concentration of 1 to 3 mg a.i. l-1 in both macrophytes exposed to Roundup, and is argued to be a good bioindicator of pollution by this compound. The concentrations of the different sugars remained unaltered across the evaluated concentrations for both macrophytes, except for the sugar profiles of L. minor, which displayed a significant increase in their content of xylose, galactose, and glucose at the concentration of 5 mg a.i. l-1 of Roundup, relative to the controlOs ecossistemas de água doce alojam múltiplas espécies que habitam no ambiente aquático e formam uma parte integral das comunidades naturais. Entre estes, as macrófitas de água doce são particularmente importantes, uma vez que as suas funções vão para além daquelas comummente prestadas por outros produtores primários de água doce, criando uma variedade de microhabitats para outras espécies e sendo também uma parte importante da estrutura dos ecossistemas. A contaminação de sistemas de água doce por herbicidas tem sido reconhecida há várias décadas e é atribuída à crescente tendência no uso destes pesticidas. O glifosato é o herbicida mais aplicado à escala mundial, devendo a sua popularidade ao desenvolvimento da formulação Roundup pela Monsanto, a qual aumenta a toxicidade do ingrediente ativo para as plantas ao promover a sua penetração nos tecidos. Na presente dissertação, avaliámos os efeitos do glifosato e da sua formulação comercial Roundup a duas macrófitas aquáticas, Lemna minor e Lemna gibba. Para compreender melhor os impactos que estes químicos têm na saúde global das plantas, avaliámos a sensibilidade de quatro parâmetros de crescimento (peso, número de frondes, área das frondes e comprimento da raiz), bem como a avaliação de perfis de açúcares como parâmetros bioquímicos, de forma a colmatar a lacuna de conhecimento relacionada com efeitos bioquímicos não-alvo em plantas. Os resultados revelaram que o Roundup é mais tóxico que o ingrediente ativo para ambas as macrófitas, bem como uma sensibilidade mais elevada de L. minor comparativamente a L. gibba. O valor de EC10 mais baixo (0.75 mg i.a. l-1) foi obtido para o Rendimento de peso em L. minor expostas a Roundup. Adicionalmente, o comprimento da raiz experienciou um decréscimo abrupto da concentração 1 para 3 mg i.a. l-1 em ambas as macrófitas expostas a Roundup, colocando-se a hipótese de este ser um bom bioindicador de poluição por este composto. As concentrações dos diferentes açúcares permaneceram inalteradas para todas as concentrações avaliadas em amabs as macrófitas, com a exceção para os perfis de açúcares de L. minor, os quais apresentaram um aumento significativo no seu conteúdo em xilose, galactose e glucose para a concentração de 5 mg i.a. l-1 de Roundup, relativamente ao controloMestrado em Toxicologia e Ecotoxicologi

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen
    corecore