9,864 research outputs found

    OFMTutor: An operator function model intelligent tutoring system

    Get PDF
    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described

    Qualitative, quantitative, and data mining methods for analyzing log data to characterize students' learning strategies and behaviors [discussant]

    Get PDF
    This symposium addresses how different classes of research methods, all based upon the use of log data from educational software, can facilitate the analysis of students’ learning strategies and behaviors. To this end, four multi-method programs of research are discussed, including the use of qualitative, quantitative-statistical, quantitative-modeling, and educational data mining methods. The symposium presents evidence regarding the applicability of each type of method to research questions of different grain sizes, and provides several examples of how these methods can be used in concert to facilitate our understanding of learning processes, learning strategies, and behaviors related to motivation, meta-cognition, and engagement

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Intelligent Tutoring System Authoring Tools for Non-Programmers

    Get PDF
    An intelligent tutoring system (ITS) is a software application that tries to replicate the performance of a human tutor by supporting the theory of learning by doing . ITSs have been shown to improve the performance of a student in wide range of domains. Despite their benefits, ITSs have not seen widespread use due to the complexity involved in their development. Developing an ITS from scratch requires expertise in several fields including computer science, cognitive psychology and artificial intelligence. In order to decrease the skill threshold required to build ITSs, several authoring tools have been developed. In this thesis, I document several contributions to the field of intelligent tutoring in the form of extensions to an existing ITS authoring tool, research studies on authoring tool paradigms and the design of authoring tools for non-programmers in two complex domains - natural language processing and 3D game environments. The Extensible Problem Specific Tutor (xPST) is an authoring tool that helps rapidly develop model-tracing like tutors on existing interfaces such as webpages. xPST\u27s language was made more expressive with the introduction of new checktypes required for answer checking in problems belonging to domains such as geometry and statistics. A web-based authoring (WAT) tool was developed for the purpose of tutor management and deployment and to promote non-programmer authoring of ITSs. The WAT was used in a comparison study between two authoring tool paradigms - GUI based and text based, in two different problem domains - statistics and geometry. User-programming of natural language processing (NLP) in ITSs is not common with authoring toolkits. Existing NLP techniques do not offer sufficient power to non-programmers and the NLP is left to expert developers or machine learning algorithms. We attempted to address this challenge by developing a domain-independent authoring tool, ConceptGrid that is intended to help non-programmers develop ITSs that perform natural language processing. ConceptGrid has been integrated into xPST. When templates created using ConceptGrid were tested, they approached the accuracy of human instructors in scoring student responses. 3D game environments belong to another domain for which authoring tools are uncommon. Authoring game-based tutors is challenging due to the inherent domain complexity and dynamic nature of the environment. We attempt to address this challenge through the design of authoring tool that is intended to help non-programmers develop game-based ITSs

    Comprendiendo el potencial y los desafíos del Big Data en las escuelas y la educación

    Full text link
    In recent years, the world has experienced a huge revolution centered around the gathering and application of big data in various fields. This has affected many aspects of our daily life, including government, manufacturing, commerce, health, communication, entertainment, and many more. So far, education has benefited only a little from the big data revolution. In this article, we review the potential of big data in the context of education systems. Such data may include log files drawn from online learning environments, messages on online discussion forums, answers to open-ended questions, grades on various tasks, demographic and administrative information, speech, handwritten notes, illustrations, gestures and movements, neurophysiologic signals, eye movements, and many more. Analyzing this data, it is possible to calculate a wide range of measurements of the learning process and to support various educational stakeholders with informed decision-making. We offer a framework for better understanding of how big data can be used in education. The framework comprises several elements that need to be addressed in this context: defining the data; formulating data-collecting and storage apparatuses; data analysis and the application of analysis products. We further review some key opportunities and some important challenges of using big data in educationEn los últimos años, el mundo ha experimentado una gran revolución centrada en la recopilación y aplicación de big data en varios campos. Esto ha afectado muchos aspectos de nuestra vida diaria, incluidos el gobierno, la manufactura, el comercio, la salud, la comunicación, el entretenimiento y muchos más. Hasta ahora, la educación se ha beneficiado muy poco de la revolución del big data. En este artículo revisamos el potencial de los macrodatos en el contexto de los sistemas educativos. Dichos datos pueden incluir archivos de registro extraídos de entornos de aprendizaje en línea, mensajes en foros de discusión en línea, respuestas a preguntas abiertas, calificaciones en diversas tareas, información demográfica y administrativa, discurso, notas escritas a mano, ilustraciones, gestos y movimientos, señales neurofisiológicas, movimientos oculares y muchos más. Analizando estos datos es posible calcular una amplia gama de mediciones del proceso de aprendizaje y apoyar a diversos interesados educativos con una toma de decisiones informada. Ofrecemos un marco para una mejor comprensión de cómo se puede utilizar el big data en la educación. El marco comprende varios elementos que deben abordarse en este contexto: definición de los datos; formulación de aparatos de recolección y almacenamiento de datos; análisis de datos y aplicación de productos de análisis. Además, revisamos algunas oportunidades clave y algunos desafíos importantes del uso de big data en la educació
    corecore