47,223 research outputs found

    Modeling and solving the periodic maintenance problem.

    Get PDF
    We study the problem of scheduling maintenance services. Given is a set of m machines and integral cost-coefficients a(i) and b(i) for each machine i (1Branch-and-price; Column generation; Costs; Linear programming; Model; Models; Optimal; Scheduling; Structure; Studies; Time;

    Combinatorial optimization model for railway engine assignment problem

    Get PDF
    This paper presents an experimental study for the Hungarian State Railway Company (M\'AV). The engine assignment problem was solved at M\'AV by their experts without using any explicit operations research tool. Furthermore, the operations research model was not known at the company. The goal of our project was to introduce and solve an operations research model for the engine assignment problem on real data sets. For the engine assignment problem we are using a combinatorial optimization model. At this stage of research the single type train that is pulled by a single type engine is modeled and solved for real data. There are two regions in Hungary where the methodology described in this paper can be used and M\'AV started to use it regularly. There is a need to generalize the model for multiple type trains and multiple type engines

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    Technological breakthroughs and asset replacement

    Get PDF
    The authors analyze the optimal replacement of assets under continuous and discontinuous technological change. They investigate the variable lifetime of assets in an infinite-horizon replacement problem. Due to deterioration, the maintenance cost increases when the asset becomes older. Because of technological change, both maintenance and new capital costs decrease for a fixed asset age. The dynamics of the optimal lifetime is investigated analytically and numerically under technological change in the cases of one and several technological breakthroughs. It is shown that the breakthroughs cause irregularities (anticipation echoes) in the asset lifetime before the breakthrough time.asset replacement, technological change, optimal lifetime, anticipation echoes.

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Selective maintenance optimisation for series-parallel systems alternating missions and scheduled breaks with stochastic durations

    Get PDF
    This paper deals with the selective maintenance problem for a multi-component system performing consecutive missions separated by scheduled breaks. To increase the probability of successfully completing its next mission, the system components are maintained during the break. A list of potential imperfect maintenance actions on each component, ranging from minimal repair to replacement is available. The general hybrid hazard rate approach is used to model the reliability improvement of the system components. Durations of the maintenance actions, the mission and the breaks are stochastic with known probability distributions. The resulting optimisation problem is modelled as a non-linear stochastic programme. Its objective is to determine a cost-optimal subset of maintenance actions to be performed on the components given the limited stochastic duration of the break and the minimum system reliability level required to complete the next mission. The fundamental concepts and relevant parameters of this decision-making problem are developed and discussed. Numerical experiments are provided to demonstrate the added value of solving this selective maintenance problem as a stochastic optimisation programme
    corecore